
Theoretical Physics is Magic

Smeapancol

Unit 1: Space

Lesson 1- Algebra

Day 5- Polynomials

The  next  day,  Twilight  found  Luna  in  the  Canterlot  gardens.  Luna  was  in

repose under a palm frond, apparently enjoying the scents of nature. 

“Princess? Are you here?” 

“Under here, disciple!”

Twilight found Luna in repose under an enormous palm frond. Little flowers

grew all around her. Light filtered in between the leaves of the frond but it was still

dim. It was just like a little tent. Time stood still inside.

“Good morning,” said Twilight as she crouched under the palm frond. “This

is a beautiful spot.”

“Yes. This is our secret hideout. Celestia does not know about it,” said Luna.

“Today we must do a little detour.” 

“I think a detour would require us to be actually on track in the first place,”

said Twilight.

“Why, whatever do you mean?”

“I mean, we haven’t done any actual physics yet. We’ve just been wandering

aimlessly through arcane mathematics.”

“Yesterday  we  did  rotations,  and  those  are  the  most  basic,  most  important

concept  in  geometry,  which  is  the  first  principle  of  physics.  You  should  not

complain.  If  you  jump into  physics  too  quickly,  you  will  learn  nothing  deeply.  You

must trust your tutor to lead you along the right track.”



“Yesterday  we  did  rotations,  and  those  are  the  most  basic,  most  important

concept  in  geometry,  which  is  the  first  principle  of  physics.  You  should  not

complain.  If  you  jump into  physics  too  quickly,  you  will  learn  nothing  deeply.  You

must trust your tutor to lead you along the right track.”

“Very well,  Princess.  I  trust  you,”  Twilight might have argued a little  more,

but it was such a beautiful day.

“Very good. Now then.” At that moment Luna conjured a notebook of graph

paper. Her horn glowed and symbols began appearing on the paper. 

(5.1)pHxL � a0 + a1 x + a2 x
2

…

“That’s a polynomial,” she said

“I know,” said Twilight.

“Do you know what it means to factor a polynomial?” asked Luna.

“That means you write a polynomial as a product of like this

(5.2)pHxL � a0 + a1 x + a2 x
2

… � c Hx - Λ0L Hx - Λ1L Hx - Λ2L … ,

where c  is an overall factor and the Λi  are the roots to the polynomial. That’s where

pHxL � 0.”

Luna  gave  Twilight  a  look  that  seemed  like  a  combination  of  disgust  and

pity. “You really do not know this material at all, do you?” she said. 

“But I thought—”

“I  strongly  doubt  you  were,  Twilight  Sparkle!  For  one  thing,  is  the

polynomial  defined  over  the  real  numbers  or  the  complex  numbers,  or  something

else entirely?”

“Well I didn’t—”

“And is the polynomial finite or infinite?”

“I didn’t realize—”

Theorem 5.1

“Indeed.  The  correct  answer  is  to  say  that  a  finite  polynomial  can  be

factored this way if it is over an algebraically closed field:



(5.3)c HHx - Λ0L Hx - Λ1L … L � 0 ,

Twilight frowned in frustration. She could never win with Luna. “What, pray

tell, is an algebraically closed field?”

“An algebraically closed field means that every finite polynomial in the field

has a root. Not all polynomials in every field can be factored. For example, just think

of the polynomial

(5.4)1 + x
2 � 0 .ø

“Its solutions are ä and - ä,” said Twilight.

Luna shook her  head.  “No no no.  Do not  skip ahead!  We have not  said yet

what field this polynomial is defined over.”

“Well what is it then?” said Twilight impatiently.

Theorem 5.2

“If  this  polynomial  were  defined  over  the  complex  numbers,  then  yes,  its

solutions would be  ä and - ä. If it were defined over the real numbers, it would have

no solutions.  The fundamental theorem of  algebra  says that the complex numbers

are, in fact, an algebraically closed field. We may get to a proof of it eventually, but

for now, you should just trust me on it.”

Twilight nodded.

“The first thing to prove about factoring polynomials is to relate a root to a

factor. Suppose a polynomial pHxL has a linear factor x - Λ, or, in other words, 

(5.5)pHxL � Hx - ΛL p
¢HxL .

Clearly Λ is a root of pHxL.”
Lemma 5.3

Luna continued, “But what about the converse? Suppose Λ  is  a root of  pHxL,
or,  in  other  words  and  by  definition,  pHΛL � 0.  Can  a  linear  polynomial  always  be

factored out? To prove this, we need a tedious little algebraic lemma.” Luna wrote 

(5.6)x
n

- Λ
n � Hx - ΛL Ixn-1

Λ
0

+ x
n-2

Λ
1

+ … + x
1

Λ
n-2

+ x
0

Λ
n-1M



“To prove this, write it as a summand and then expand like so:”

(5.7)
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1
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The next part is some annoying summand algebra.” Luna wrote 
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“To do the next  step,  notice that  the second part  of  every term in this  summand is

the  opposite  of  the  first  part  of  the  following  term.  This  means  that  the  entire

summand cancels out except for the first part of the first term and the second part of

the last term. We end up with

(5.9)
� x

n
- Λ

n
+ â

1£i<n

Ixi+1
Λ

n-i-1
+ x

i+y
Λ

n-i-1M � x
n

- Λ
n

.ø

Twilight nodded, trying to follow along. 

Proposition 5.4

“Now  that  the  lemma  is  done,  we  can  get  on  to  the  main  result.  Let  it  be

given that Λ is a root of pHxL, which means that pHΛL � 0. Then we can write 

(5.10)pHxL � pHxL - pHΛL � a1 Hx - ΛL + a2 Ix2
- Λ

2M + a3 Ix3
- Λ

3M + …

Lemma 5.3 says that a linear polynomial can be factored out of each of these terms.

We can write expression 5.5 as 

(5.11)
pHxL � a1 Hx - ΛL + a2 Hx - ΛL p1HxL + a3 Hx - ΛL p2HxL + …

� Hx - ΛL p
¢HxL

In other words, if a polynomial has a root, than a linear polynomial can be factored

out of it. The details of the polynomial p¢HxL do not matter, other than to note that its

degree  must  be  less  than  that  of  pHxL.  The  reason  this  is  important  is  that

proposition  5.4  can  be  applied  recursively,  and  we  can  know  that  the  resulting

polynomial is simpler with each application.
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out of it. The details of the polynomial p¢HxL do not matter, other than to note that its

degree  must  be  less  than  that  of  pHxL.  The  reason  this  is  important  is  that

proposition  5.4  can  be  applied  recursively,  and  we  can  know  that  the  resulting

polynomial is simpler with each application.

Proposition 5.5

If  the  polynomial  is  finite,  and  if  the  polynomial  is  defined  over  an

algebraically closed field, we can continue to factor out linear polynomials until only

a linear polynomial is left. The linear polynomial that is left at the end might have an

overall scalar factor that can be factored out as well. Hence 

(5.12)c HHx - Λ0L Hx - Λ1L … L � 0 .ø

“Just what I wrote earlier.” said Twilight with some irritation. 

“This  is  true  for  every  algebraically–closed  field.  For  fields  that  are  not

algebraically  closed,  there  is  no  general  rule  about  how  polynomials  factor.  For

example, the rational numbers are not an algebraically closed field, and it is easy to

construct  polynomials  in  it  that  cannot  be  factored  at  all.  For  example,

1 + 2 x + x
3 � 0 is a rational polynomial but it has no roots among the rationals.

Theorem 5.6

However,  there  is  a  rule  for  factoring  polynomials  over  the  real  numbers.  The

polynomial will factor into something like this: 

(5.13)
c IHx - I Λ0L Hx - I Λ1L … Ix2

- x HΜ0 + Μ0
*L - Μ0 Μ0

*M …M
Ix2

- x HΜ1 + Μ1
*L - Μ1 Μ1

*M …M � 0 .

In this  expression,  there  are  two kinds of  roots.  Real  roots  Λi  and complex pairs  of

roots Μi and Μ
i

*. 

Proposition 5.7

If  a  complex  number  is  a  root  of  a  real  polynomial,  so  is  its  complex

conjugate. Suppose a polynomial has real coefficients and it has a root Λ. Then 

(5.14)0 � Ia0 + a1 Λ + a2 Λ
2

…M* � a0 + a1 Λ
*

+ a2 Λ
*2

…

which proves that Λ*  is a root as well. If Λ is a real number than this tells us nothing,

but if it is complex it gives us a totally different complex root!

“And that actually holds for infinite polynomials too,” said Twilight.

“Why  yes,  I  suppose  it  does!  Since  the  fundamental  theorem  of  algebra

proves  to  us  that  we  can  factor  polynomials  into  linear  polynomial  factors,  we  can

write 



“Why  yes,  I  suppose  it  does!  Since  the  fundamental  theorem  of  algebra

proves  to  us  that  we  can  factor  polynomials  into  linear  polynomial  factors,  we  can

write 

(5.15)
pHxL � a0 + a1 x + a2 x

2
… �

Hx - ΛL Hx - Λ
*L pn-2HxL � Ix2

- HΛ + Λ
*L x + Λ Λ

*M pn-2HxL
But the factor x2 - HΛ + Λ*L x + Λ Λ* is actually a quadratic real polynomial. 

Proposition 5.8

Now we can finally get expression 5.13. First, factor out all the real roots. Then factor

out  the  pairs  of  complex  roots  as  quadratic  polynomials.  Then  factor  out  any

remaining overall scalar factor and you’re done!”

“…And why do I need to know any of this again?”

“You  will  understand  very  soon,  Twilight  Sparkle.  Possibly  tomorrow.  But

one thing I can tell you now is that we will find a correspondence between invertible

linear  operators  and  polynomials.  We  will  be  able  to  use  this  to  show  that  every

rotation  operator  should,  in  some  sense,  factor  like  a  real  polynomial.  This  will

complete the proof that 

“Alright Princess. Very well then.”

“Now, what about factoring infinite polynomials? I have already pointed out

that  the  proofs  I  gave  do  not  work,  but  do  you  know  of  any  infinite  polynomials

which would provide a counterexample?”

“No.”

“I can give you a good one. Consider the infinite polynomial 

(5.16)f � 1 + x + x
2

+ x
3

+ x
4

…

Does this polynomial have any roots?” 

“I don’t know, Princess.”

“No, it does not. You can see this by observing that 

(5.17)f � 1 + x + x
2

… � 1 + x I1 + x + x
2

…M � 1 + x f

“Solve for f  and you get f � 1

1-x
.  Of course that only works when the value

of f  is finite. That is, when x < 1. Otherwise, f  is infinite because every term in the

series is larger than the previous.”



“Solve for f  and you get f � 1

1-x
.  Of course that only works when the value

of f  is finite. That is, when x < 1. Otherwise, f  is infinite because every term in the

series is larger than the previous.”

“Of course,” said Twilight, barely following.

“But  you can see  that  the  expression 
1

1-x
 is  never  zero  for  x < 1.  Thus,  f  is

either infinite or it is a finite expression that is never zero. That means no roots.”

“Alright  then,”  said  Twilight  to  sum  up.  “A  polynomial  factors  differently

depending on whether it is finite or infinite and whether it is real or complex.”

“Quite so,” said Luna. “Well that’s the most important part of today’s lesson.

I  do not  think we have enough time to start  something new, so perhaps we should

conclude with something fun!”

“Perhaps  instead  I  could  leave  early?  I  mean  there’s  really  a  lot  of  work  I

should be…” Twilight paused when she saw Luna’s crestfallen expression. “I mean…

I suppose I have time for a bit of fun…”

“Oh excellent. We don’t often have time to do any pure math around here.”

“Isn’t that the only thing we’ve done so far?”

“I have already told you that everything we have ever done will be critical to

your  understanding  of  physics.  But  now  I  think  we  will  do  just  a  bit  of  pure

mathematics.  I’m sure you know the quadratic formula of  course,  but do you know

the  formulas  to  solve  cubic  and  quartic  polynomials?  I  will  show  you  the

derivations.”

“Um, yes that sounds like great fun, Princess.”

“I’m glad you think so! Let’s start with a linear polynomial. How would you

solve something like this?”

(5.18)a + b x � 0

“Um, that one’s kind of obvious, Princess. I think I could do that one when I

was a filly. It’s just 

Theorem 5.9



(5.19)x = -
a

b

.ø

“Yes well… we just included that for completeness. Now on to the quadratic

polynomial.”

“Also one I already know,” said Twilight.

(5.20)a + b x + c x
2 � 0

“Let me show you a trick to simplify first. We shall normalize the polynomial

by dividing by c. This removes the factor on x2. Then the polynomial becomes 

(5.21)a
¢

+ b
¢
x + x

2 � 0

where a¢ � a

c
 and b¢ � b

c
. We will need that trick in the rest of the derivations, so get

used to it!”

“…Alright.” said Twilight. “Then I just complete the square 

(5.22)a
¢

+ b
¢
x + x

2 � a
¢

-
b

¢2

4
+

b
¢

2
+ x

2

� 0 ,

Theorem 5.10

and then I can then solve for x again. 

(5.23)x � ± a
¢

-
b

¢2

4
-

b
¢

2

There are two solutions because the square root could be positive or negative.” 

“Quite  right,  but  I  must  object  to  your  use  of  the  ±  symbol.  This  symbol

really  on  makes  sense  when  you  are  working  with  real  numbers.  A  positive  real

number  has  two  square  roots,  one  positive  and  one  negative,  and  a  negative  real

number  has  two  square  roots,  one  positive  imaginary  and  one  negative  imaginary.

However,  for  complex  numbers  generally,  these  two  roots  get  mixed  up  and  there

isn’t one that you can say is objectively the positive or negative one. It makes more

sense to write something like this:”



(5.24)
x � a

¢
-

b
¢2

4

both

-
b

¢

2

“What do you mean that the roots get mixed up?”

“Hmm.  Imagine  for  a  moment,”  said  Luna,  “a  complex  number

p º HcosHΘL + ä sinHΘLL p ,  where  p  is  a  real  number.  The  parameter  Θ  rotates  p

around a circle centered at zero. What do you think happens to the square roots of p

as it rotates around?”

“I don’t know. Maybe there is a way to find an expression for the square root

of p?”

“Here’s a hint. Use the half-angle formulas!”

“Oh, I think I see. I can just make the replacements cosHΘL ® cosI Θ

2
M2

- sinI Θ

2
M2

and sinHΘL ® 2 sinI Θ

2
M cosI Θ

2
M and I get a nice perfect square.” Twilight wrote 

(5.25)

p � HcosHΘL + ä sinHΘLL p

� cos
Θ

2

2

+ 2 ä cos
Θ

2
sin

Θ

2
- sin

Θ

2

2

p

� cos
Θ

2
+ ä sin

Θ

2

2

p .

“So,” Luna interrupted, “the square roots of p are 

(5.26)p � cos
Θ

2
+ ä sin

Θ

2
p ,

where  p  is  the  positive  square  root  of  p .  Since  p  is  real,  there  is,

objectively,  one positive root so there isn’t  a  problem in this case.  We can get both

roots  by  observing  that  since  Θ  and  Θ + 2 Π  are  equivalent,  you  could  interpret  
Θ

2
 as

either itself or as 
Θ

2
+ Π.”

“Or just by writing ±,” grumbled Twilight under her breath.

Twilight  continued.  “So  this  expression  says  that  as  you  rotate  p  around  a

circle, the square roots of p rotate at half the rate.”



Twilight  continued.  “So  this  expression  says  that  as  you  rotate  p  around  a

circle, the square roots of p rotate at half the rate.”

“Indeed.  Good  observation,  Twilight  Sparkle!  This  means  that  if  p  goes  all

the way around the circle, the square roots of p  have only rotated half way around.

Thus, what was originally the positive square root of p has become the negative one

and vice versa.”

Θ

ÈpÈ

p

- p

“I never noticed that before, Princess!”

“This  is  why  there  is  no  objectively  positive  or  negative  square  root  of  a

complex  number.  It  is  arbitrary  to  specify  one  or  the  other.  There  is  a  similar

relation  for  higher  roots.  For  example,  there  are  three  cube  roots  for  a  complex

number, arranged in an equilateral triangle. If you rotate a complex number around

the  origin,  its  cube  roots  rotate  a  third  of  the  way  around.  Its  four  tesseract  roots

rotate one fourth of the way around and so on. …Oh dear.”

“What is it, Princess?”

“I just realized that you probably will want to know about these properties of

complex numbers for doing physics! That means this isn’t a total digression.”



“I just realized that you probably will want to know about these properties of

complex numbers for doing physics! That means this isn’t a total digression.”

Twilight rolled her eyes a little.  “Don’t  worry Princess.  I  think I  can handle

it.”

“Alright,  but  some  day  we  must  do  some  really,  really  pure  mathematics.

But now I want to show you another trick. Going back to the polynomial 

(5.27)a
¢

+ b
¢
x + x

2 � 0 ,

try making the substitution 

(5.28)x ® x
¢

-
b

¢

2
.

This gives 

(5.29)

a
¢

+ b
¢
x + x

2 �

a
¢

+ b
¢

x
¢

-
b

¢

2
+ x

¢
-

b
¢

2

2

�

a
¢

+ b
¢
x

¢
-

b
¢2

2
+ x

¢2
+

b
¢2

4
- b

¢
x

¢ �

a
¢

-
b

¢2

4
+ x

¢2 � 0 .

Thus,  we  have  eliminated  the  linear  term  from  the  polynomial  and  are  left  with

something that can easily be solved. You see? 

(5.30)x
¢ � a

¢
-

b
¢2

4

To get the more general solution, simply replace back in the definitions of x¢, a¢  and

b
¢. There is a similar trick for all higher-order polynomials.”

Twilight nodded.

“Next,  finally  we  shall  do  something  new.  The  cubic  equation!  I  write  it

already normalized.”



(5.31)a + b x + c x
2

+ x
3 � 0

Now, with the replacement 

(5.32)x ® x
¢

-
c

3
,

we get a simpler cubic with the quadratic term eliminated. 

(5.33)a
¢¢

+ b
¢¢

x
¢

+ x
¢3 � 0

What  does  this  do  for  us?  Look  at  the  condition  that  is  imposed  on  the

solution  of  this  equation  by  removing  the  quadratic  term.  Let  us  write  a  cubic

polynomial  that  has  been  factored  into  its  three  roots  Λ0,  Λ1,  and  Λ2.  Then  if  we

expand that out like this

(5.34)
HΛ0 - xL HΛ1 - xL HΛ2 - xL �

Λ0 Λ1 Λ2 - HΛ0 Λ1 + Λ0 Λ2 + Λ1 Λ2L x + HΛ0 + Λ1 + Λ2L x
2

- x
3

,

you can see that if the quadratic term (which I’ve highlighted in pink) is to be zero,

the  solutions  to  the  polynomial  must  all  sum  to  zero.  What  can  we  do  with  this

knowledge?”

“I  don’t  know.  Effectively  it  means  there  are  only  two  solutions  to  find

because the third is determined by the others.”

Definition 5.1 : Ansatz

“Right,  and  there  is  a  clever  trick  to  take  advantage  of  that.  Now  if  you

wanted  two  independent  numbers  whose  sum  was  p,  you  could  introduce  the  a

number q  and just arbitrarily say that the numbers you wanted are p + q  and p - q.

You could write every possible pair of numbers this way, so you can always declare

that they will come in that form. When you declare that you will write everything in

a particular form without loss of generality, this is called an ansatz. The next step in

the derivation of the cubic is to come up with the right ansatz. 

Now, take the expression p
3

, where p is a complex number. The cube root

of  p  actually  stands  for  three  complex  numbers  which  form  an  equilateral  triangle

centered at the origin.”

“So they will sum to zero.”

“Indeed.  You  are  thinking  along  the  right  lines.  The  trick  is  to  write  x  as

p
3

+ q
3

,  the sum of  two cube roots,  and to show that this  is  an ansatz for  three

complex numbers whose sum if zero.”



“Indeed.  You  are  thinking  along  the  right  lines.  The  trick  is  to  write  x  as

p
3

+ q
3

,  the sum of  two cube roots,  and to show that this  is  an ansatz for  three

complex numbers whose sum if zero.”

Newly  sensitized  to  the  subtleties  of  complex  roots,  Twilight  asked,  “what

does that expression mean exactly? Is each cube root added to each of the others?”

Luna  leaned  very  close  to  Twilight’s  face.  “Good  question.  You  are  really

starting to understand what you are dealing with. But if you added each root of p to

each of q, you would have nine numbers, and we only need three. Instead, you only

add one  cube  root  of  p  to  a  cube  root  of  q  and then a  different  cube  root  of  p  to  a

different cube root of q until you have run out.”

“So  we  can  definitely  say  that  the  sum  of  all  the  numbers  represented  by

p
3

+ q
3

 is  zero,  since  each  set  of  cube  roots  sums  to  zero,”  said  Twilight.  “But

how do we choose which ones to add?”

“Don’t  worry  about  that  question  for  now.  I  will  first  prove  that  the  ansatz

works. Let us say that we want to make the complex numbers u, v, and -u - v out of

p
3

+ q
3

,  and let us write the cube roots of p  and q  as pi  and qi,  where 0 £ i £ 2.

We want to be able to say that 

(5.35)

u = p0 + q0

v = p1 + q1

-u - v � p2 + q2 .

We  know  that  the  cube  roots  of  p  and  q  form  equilateral  triangles  centered  at  the

origin, so we can say that they are numbered either clockwise or counterclockwise. If

the labels of both sets of roots go in the same direction, then v is constrained by the

value of u. It is just a 120 ° rotation of u, either clockwise or counterclockwise. If that

is  the  case,  then  p
3

+ q
3

 just  represents  another  equilateral  triangle  centered

about  the  origin,  which  does  not  help  us  one  bit.  Therefore,  we  must  say  that  the

roots of  p  and q  are labeled in opposite directions. Let us just arbitrarily say that q

goes counterclockwise and p goes clockwise. Then we can write 



(5.36)

u = p0 + q0

v =
1

2
K1 + ä 3 O p0 +

1

2
K-1 + ä 3 O q0 .

You can think of Hp0, q0L and Hu, vL each as spanning sets of the complex plane viewed

as a two–dimensional vector space. The transformation between them is the matrix 

(5.37)

1 1

1

2
I1 + ä 3 M 1

2
I-1 + ä 3 M .

This is an invertible matrix, which means that for any p0  and q0  you can always find

a u and v and vice versa.”

“Thus proving the ansatz!” concluded Twilight, “But which two roots do we

add?” 

“Actually,  it  does not matter.  Since the cube roots are arbitrary,  it  does not

matter  which  root  of  p  and  q  you  begin  with.  You  must  ultimately  get  the  same

answer either way.”

“What is the proof of that?”

“It  already  is  proven  because  the  roots  are  arbitrary.  Necessarily  it  cannot

matter.  If  you  want  to  convince  yourself  of  that,  you  can  try  adding  cube  roots

together on your own time.”

“Very well, Princess.”

“We  are  almost  done  with  the  cubic  now,”  continued Luna.  “We  substitute

the new expression in for x and get 

(5.38)

a
¢¢

+ b
¢¢

x
¢

+ x
¢3 �

a
¢¢

+ b
¢¢ J p

3
+ q

3 N + J p
3

+ q
3 N3

�

Ha¢¢
+ p + qL + Jb¢¢

+ 3 p
3

q
3 N J p

3
+ q

3 N � 0 .

In order for this to be true, it must be that both terms on the left are zero. Do you see

why?

“Because  a¢¢  and  b¢¢  are  arbitrary.  If  the  two  terms  had  to  sum  to  zero

without  both  being  zero  individually,  this  would  put  a  condition on a¢¢  and b¢¢.  We

need to be able to write a¢¢ and b¢¢ as separate expressions of p and q.”



“Because  a¢¢  and  b¢¢  are  arbitrary.  If  the  two  terms  had  to  sum  to  zero

without  both  being  zero  individually,  this  would  put  a  condition on a¢¢  and b¢¢.  We

need to be able to write a¢¢ and b¢¢ as separate expressions of p and q.”

“That is correct. So that gives the two equations 

(5.39)

a
¢¢ � - p - q

b
¢¢

= -3 p
3

q
3

which simplify to 

(5.40)-
b

¢¢3

27
- a

¢¢
p + p

2 � 0 .

or 

(5.41)-
b

¢¢3

27
- a

¢¢
q + q

2 � 0 .

These  are  quadratic  equations.  In  fact,  they  are  both  the  same  quadratic  equation,

but with a different variable. However, if you let p be equal to one root, you find that

q must be equal to the other root. So we can then write 

(5.42)

p �
1

2
a

¢¢
+ a

¢¢2
+

2

3

2

b
¢¢3

any

q �
1

2
a

¢¢
- a

¢¢2
+

2

3

2

b
¢¢3

any

,

as long as you pick the same root in both expressions. Then the solution to the cubic

is 

(5.43)1

2
H a

¢¢
+ dL3

clockwise

+
1

2
H a

¢¢
- dL3

counterclockwise

,



where 

(5.44)
d � a

2
+

2

3

2

b
¢¢3

any

.

“That was lovely, Princess.”

“Thank you, Twilight Sparkle,” Luna actually smiled at that. “Now on to the

quartic equation. The quartic can be simplified by some similar steps to the ones we

used with the cubic, so we shall start out with 

(5.45)a + b x + c x
2

+ x
4 � 0 .

Next, add c x
2 + c

2 to both sides of the equation to complete the square on one side.

(5.46)

c x
2

+ x
4 � -a - b x

c
2

+ 2 c x
2

+ x
4 � c

2
- a - b x + c x

2

Ic + x
2M2 � c

2
- a - b x + c x

2

That was a good trick, but here is where the real trick comes in. We want to

be able to make both  sides of  the equation into perfect squares.  To do this,  change

the left side of the equation to Ic + x
2 + XM2

.  If you expand that out, you can see that

this is equivalent to adding 2 c X + 2 x
2 X + X2. So, 

(5.47)
Ic + x

2
+ X

2M2 � c
2

+ 2 c X + X
2

- a - b x + Hc + 2 XL x
2

� Hc + XL2
- a - b x + Hc + 2 XL x

2
.

If the right side is a perfect square in x, it must be that 

(5.48)-b � 2 Hc + XL2
- a c + 2 X .

or

(5.49)

b
2

2
� IHc + XL2

- aM Hc + 2 XL �

I-a c + c
3M - 2 a X + 4 c

2
X + 5 c X

2
+ 2 X

3
.

This is  a  cubic equation in X!  Something you just learned to do.  It  does not matter

which  solution  you  choose  because  each  is  able  to  form  a  perfect  square  out  of

expression 5.47 and each gives the same solutions. The expression then becomes 



This is  a  cubic equation in X!  Something you just learned to do.  It  does not matter

which  solution  you  choose  because  each  is  able  to  form  a  perfect  square  out  of

expression 5.47 and each gives the same solutions. The expression then becomes 

(5.50)

Ic + x
2

+ X
2M2 � Hc + XL2

- a - b x + Hc + 2 XL x
2

Ic + x
2

+ X
2M2 � Hc + XL2

- a

any

+ c + 2 X

any

x

2

.

Here  you  have  to  choose  which  square  roots  you  want  to  use.  You  may  choose

whichever you like and the result  will  still  work,  but  notice that  in expression 5.48

you already made a choice about the products of the roots. So make sure your choice

is consistent with that!

Theorem 5.11

Next, take the square root of this expression and get a quadratic in x:

(5.51)
s0 Ic + x

2
+ X

2M � Ic + X
2M2

- a

any

+ c + 2 X

any

x .

Here  we  make  a  choice  that  is  not  arbitrary.  You  could  have  chosen  either  square

root and each will give different answers. I have added the factor s0  to represent this

choice.  Any  solution  you  can  find  when  s0  is  1  must  also  give  solutions  when   is

factor  that  represents  the  choice  you  made  when  you  took  the  square  root.  The

solutions whose solutions are

(5.52)x �
1

2 s0

KA + s1 A
2

+ 4 Is0 B - 4 c - 4 X
2M O ,

where s1 is the choice of solution

(5.53)

A � c + 2 X

any

B � -a + Ic + X
2M2

any

.

and X is a solution to the cubic equation given before.”

Twilight  nodded  and  wondered  how  long  this  progression  would  continue

before she would be set free.



“Now as to the quintic equation—

“Um, Princess. Don’t you think we’re a little overtime already?”

“Yes we are.  Too bad,  because the quintic equation is  where it  really  starts

to get interesting.”

“It does?”

“It turns out that there is no general solution to quintic polynomials that can

be  written  using  only  sums,  products,  and roots.  To  prove  that  requires  going  into

some very interesting and advanced mathematics.”

“Really?”

“Unfortunately, to understand this requires much more than what we can go

into tonight. Or ever!“

“Oh…” said Twilight, half disappointed and half relieved. 

“Now off with you, disciple!”


