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The next  day Twilight found Luna sitting quietly  just  inside the gate to the

Canterlot gardens. 

“Good morning, Princess.”

“Good  morning,  Twilight  Sparkle.  Today  we  shall  talk  more  about

transformations.”

Twilight  grinned.  “You  mean  like  how  you  transformed  into  Nightmare

Moon?”

Luna pouted slightly. “No, foolish Twilight Sparkle! I mean something much

more interesting: coordinate transformations!”

Twilight  could  see  that  she  had  said  the  wrong  thing.  “I’m  sorry,  Princess!

Just a joke, haha!”

“Hmf!  Very  well.”  Luna  began  to  lead  her  to  the  Canterlot  wall,  where  a

green pegasus colt with a sponge was cleaning their work from yesterday.

Luna waited for him to clear off enough room on the wall for them to begin

work. Then her horn glowed a moment and the pegassus disappeared with a zap. 

“Um.” said Twilight. “Where did he go?”



“Oh, I just sent him to somewhere else where there is a mess.”

“I don’t think you should just teleport people away without warning.”

“Why not? He’s  my employee,  so  I  can do whatever I  want with him! Plus,

it’s more efficient that way.”

“But that might terrify him! Don’t you think that could be disconcerting.” 

Luna grumbled. “Well maybe. But I didn’t know what to say to him!”

Twilight sighed. “Well maybe you could say, ‘Thank you, and if you wouldn’t

mind just find something else to do until we’re done here.’”

Luna shook her haid. “No no no! That sounds simply awful!” 

“But—”

Definition 4.1 : Coordinate Transform

“No no no,  I  said.  Anyway,  to  transform the coordinates  is  to  define a  new

set of coordinates and transform everything so that they are described in the new set

of coordinates instead of the old ones. For a vector space, that just means a change

of basis.  We know that there is one linear map for every basis map and that a map

from  one  basis  to  another  is  invertible.  So  therefore  we  define  a  coordinate

transform is an invertible operator.”

“Now look,  you did  it  again!”  said  Twilight  now a  little  irritated.  “You took

something that  is  meaningful  in  our  intuition,  in  this  case  a  coordinate  transform,

mentioned  some  properties  that  it  has,  and  then  redefined  it  in  terms  of  those

properties, thus turning it into something meaningless.” 

Luna considered that for a moment. “Philosophically, we start by using our

intuition.  Intuition  has  rules  that  make  it  work,  but  they  are  not  conscious.  So  we

have to search for rules that predict our intuition. Once we have those rules, then we

rely on the rules, not our intuition.”

“To  change  coordinates  by  a  transform  T ,  you  multiply  a  vector  by  the

operator, yes?”

“Yes.”



“But what do you do to change the coordinates of a linear map?”

“I’m not sure.”

“Well let us think about it. If w � B v
Ó
, then a change of coordinates requires

that 

(4.1)
T w � B

¢
T v

Ó
w � T

-1
B

¢
T v

Ó

where  B¢  is  the  coordinate  transformed  version  of  B.  To  make  this  work,  we  need

that  B � T
-1

B
¢
T ,  or  in  other  words  that  B¢ � T B T

-1.  This  is  how  you  do  a

coordinate transform on a linear map. Understand?”

“I understand, Princess!” Twilight said.

“This is  another thing I  want you to be able to think about in two different

ways.  You  may  have  already  realized  this,  but  a  linear  map  is  a  vector.  It  can  be

added to  other  maps  and multiplied by  scalars,  so  necessarily  so.  An operator  B  in

the vector space V  is a vector in the space V �V .”

“What does the cross mean, Princess?”

“That  is  the  Cartesian  product.  The  Cartesian  product  operates  on  sets

which  have  similar  operations  defined  on  them  and  it  allows  those  operations  to

distribute over the product.” 

“Ummmm… what?”

“I mean, suppose A and B are both sets with addition defined on them, and

suppose A  has members ai  and B  has members bi.  Then 8ai, bi< Î A�B  for all  i.  You

see? Each element of A�B is just takes one element from A and one element from B.

Addition is then defined by 8a1, b1< + 8a2, b2< � 8a1 + a2, b1 + b2<.” 

“So V �V  is another vector space?”

“Correct. Although it’s not always the case that the Cartesian product of two

things is  always the same kind of  thing.  For example,  the Cartesian product of  two

fields is a ring.”

“Ok!” 

“Now  look  again  at  the  expression  T B T
-1.  It  looks  like  a  linear  map

multiplied  on  the  right  and  left  by  other  linear  maps  so  as  to  apply  a  coordinate

transform, yes?”



“Now  look  again  at  the  expression  T B T
-1.  It  looks  like  a  linear  map

multiplied  on  the  right  and  left  by  other  linear  maps  so  as  to  apply  a  coordinate

transform, yes?”

Twilight nodded.

“But look at the following equation. What does it suggest to you?”

(4.2)T Hb B + c CL T
-1 � b T B T

-1
+ c T C T

-1

“It looks a lot like the rule defining a linear map.”

“Actually,  it  looks  exactly  like  the  rule  defining  a  linear  map!  This  proves

that T  can be considered a linear operator on V �V , where multiplication by a vector

B is defined as a coordinate transform on the operator B. So when you see T B T
-1, I

want you to think, this is both a coordinate transform, but it is also T B.” 

“Got it, Princess!”

“Now  I  will  show  that  if  V  is  an  inner  product  space,  then  V �V  is  also  an

inner  product  space.  It’s  really  pretty  clear  now  we  want  to  be  able  to  write

something that is equivalent to B g C. You know how to apply g to C by performing a

coordinate  change  to  get  g C g
-1.  Next  we  would  have  to  do  something  like  a  dot

product.  We  would  want  simply  to  sum  over  all  the  corresponding  components  of

the matrices for B and C. It turns out you can do that this way: 

(4.3)B × C � TrIBT
g C g

-1M
Definition 4.2 : Trace

where the Tr stands for the trace. That means sum along the diagonal of a matrix, so 

(4.4)TrHBL � Baa

I suppose we shall prove that expression 4.3 is an inner product. How would you do

that?

Twilight replied, “The expression is linear, so that is one property. The other

property  is  symmetry.  To  make  it  easier,  I  can  write  expression 4.3  without  the  gs

and just say that we’re in an orthonormal basis.”



Luna nodded. “Good start. Next try abstract index notation.”

Twilight didn’t think she needed a hint but she didn’t say anything. 

(4.5)TrIBT
CM � Bab Cab � TrICT

BM � TrIC B
T M

“Well that’s clearly symmetric.” she said. 

“Yes,  and  what  is  the  lesson?  There  are  many  more  vectors  sitting  around

than just the spatial vectors and you should never listen to any ignoramus who says

a vector is something with a magnitude and direction!”

Twilight could not help but roll her eyes. 

“Now,” Luna continued, “we shall think about a coordinate transform O that

preserves the inner product. Since the inner product defines the concept of an angle

between  two  vectors,  this  is  the  same  as  saying  that  O  applied  to  any  two  vectors

must preserve the angle between any two vectors it is applied to, right?”

“Yes.”

Definition 4.3 : Orthogonal Transformation

“The  O  stands  for  orthogonal  transformation,  which  is  what  this  is.  That

means  that  O g O
-1 � g,  or  that  O  and  g  commute  with  one  another.  These

transforms are very special! Orthogonal transformations (and their generalizations)

form the basis for all physics! So pay attention!” Luna stomped loudly.

Twilight  started  at  the  sharp  sound  of  Luna’s  palladium  shoes  against  the

stone. “I’m listening!”

“Start  with  a  general  inner  product  expression,  and  then  perform  a

coordinate transform. 

(4.6)y × x � x g y � x O
T

O g O
-1

O y � x O
T

g O y

Since g commutes with O, it follows that 

(4.7)

O
T

g O � g

O
T

O g � g

O
T

O � 1



This uses the fact that g is invertible.”

Theorem 4.1

“So,” said Twilight, “a transformation that preserves the cross product is the

inverse of its transpose. Or, in other words, to invert such an operator, merely take

the transpose.” 

“Exactly! It is also the case that the product of orthogonal transformations is

an orthogonal transformation. 

Proposition 4.2

(4.8)O1 O2 HO1 O2LT � O1 O2 O
2

T
O

1

T � 1

Since  1  is  an  orthogonal  transformation,  this  makes  orthogonal

transformations a  group,  something you may recall  we briefly  mentioned on day 1.

We shall have more to say about that later!”

Luna sniffed a little. “Do you remember yesterday when we came up with a

formula for a projection operator perpendicular to a unit vector? it was

PÞH pL � 1 - p Ä p .ø

Twilight nodded.

“You must  imagine a  similar  operator  which performs a  flip,  which we will

write as F
p
. It should invert vectors parallel to p and leave other vectors the same.”

“Yes, Princess! I can do that! See, here it is already.” 

F
p

� 1 - 2 p Ä p

Definition 4.4 : Vector Flip

“Yes! That’s a kind of flip. You just go twice as far as the projection and you

end up with an inversion. This kind of flip I’ll call a vector flip because it’s defined as

a flip over a single vector. 

Definition 4.5 : Flip

A more general idea of a flip is an orthogonal transformation that is its own

inverse. It is easy to see that F
p
 has this property. The flip inverts one component of

the vector, so the same flip again will revert it to how it was. It also has a symmetric

matrix, so it is an orthogonal transformation. Can you think of any other operations

with this property?”



A more general idea of a flip is an orthogonal transformation that is its own

inverse. It is easy to see that F
p
 has this property. The flip inverts one component of

the vector, so the same flip again will revert it to how it was. It also has a symmetric

matrix, so it is an orthogonal transformation. Can you think of any other operations

with this property?”

“A 180 degree rotation?”

“That  is  true!  Of  course,  a  180  degree  rotation  is  the  product  of  two

perpendicular flips, correct?”

“Is it Princess?”

“Yes!  Give  it  a  try  with  this  picture.  First  flip  across  H1, 0L,  and  then  flip

across H0, 1L. See?”

Twilight played with the picture. “I understand the example, Princess, but is

this true in general?”

“What do you think, Twilight Sparkle?”

“Come to think of it, that reminds me of a question I had yesterday. Each of

the two flips picks out a particular vector, but the final result, the 180° rotation, does

not. The only thing that is specially picked out is the plane of rotation. So as long as

both flips were in the same plane and were perpendicular to one another,  the final

result would have to be the same 180° rotation. We can have the flips aligned to the

axes without limiting our general knowledge of the resulting rotation.”

“Yes! Exactly that! You are really learning now, Twilight Sparkle. That was a

very good symmetry argument.”

Twilight blushed a little at the praise.

Luna continued. “I will call operators like F
p
 a one-dimensional flip because

it  only  flips  one  vector.  A  180°  rotation  is  a  two-dimensional  flip.  You  could  have

flips  for  any  number  of  dimensions.  Are  there  any  other  possibilities  for  one–

dimensional flips other than F
p
?”



Luna continued. “I will call operators like F
p
 a one-dimensional flip because

it  only  flips  one  vector.  A  180°  rotation  is  a  two-dimensional  flip.  You  could  have

flips  for  any  number  of  dimensions.  Are  there  any  other  possibilities  for  one–

dimensional flips other than F
p
?”

“The identity operator could be considered a one–dimensional flip.” 

“Right.  There  are  no  other  possibilities  for  a  one-dimensional  flip,”  Luna

continued. “This can be seen by thinking of flips as operators acting on a given one–

dimensional  subspace.  A  one–dimensional  real  vector  space  is  just  the  real

numbers,  and  you  know  that  -1  and  1  are  the  only  numbers  which  are  their  own

inverses.

Thinking about flips  more generally,  suppose that  there were a  general  flip

f ,  and  let’s  say  that  f v
Ó � w.  Then  since  by  definition  f

2
v
Ó � v

Ó
,  it  must  be  that

f w � v
Ó
. Now therefore 

(4.9)
f HvÓ + wL � v

Ó
+ w

f HvÓ - wL � - HvÓ - wL
There  are  two  possible  ways  to  interpret  this.  If  v

Ó
 and  w  are  linearly  independent,

then  f  acts  on  the  space  they  span  as  F
v
Ó

-w
.  On  the  other  hand,  if  v

Ó
 and  w  are  not

linearly  independent,  then  w � ±v
Ó
.  In  these  cases,  f  acts  on  the  one-dimensional

subspace  spanned  by  v
Ó

 as  either  the  identity  operator  or  F
v
Ó.  What  fact  have  we

proved here?” 

“Oh, oh! I know, Princess! You’ve proved that every flip operator can have a

vector-flip factored out of it!” 

“Why is that important?”

“Because that observation can be applied recursively on f !  Every flip f  can

be written f � F
p

f-1, where v
Ó

1  is some vector on which f  flips and f-1  is a flip that

acts  on  the  subspace  perpendicular  to  v
Ó
.  So  you  can  write  any  flip  as  a  product  of

perpendicular vector flips!” 

“Right! Of course that only applies to countable dimensional  inner product

spaces.”

Twilight nodded eagerly. The proof had really made her excited because she

had  actually  seen  where  it  was  going  before  Luna  had  finished.  She  was  getting

smarter! The technique would never have occurred to her just a few days ago. 



Twilight nodded eagerly. The proof had really made her excited because she

had  actually  seen  where  it  was  going  before  Luna  had  finished.  She  was  getting

smarter! The technique would never have occurred to her just a few days ago. 

“And  since  each  one  dimensional  flip  means  either  multiplication  by  1  or

-1,”  continued  Luna,  “You  can  just  think  of  a  flip  in  terms  of  two  perpendicular

subspaces. Those which are multiplied by 1 and those which are multiplied by -1.” 

Twilight nodded. 

“Now  let’s  think  about  one-dimensional  flips  that  are  not  orthogonal.  We

shall first flip about p and then about q.” Luna wrote on the board. 

(4.10)

H1 - 2 q Ä qL H1 - 2 p Ä pL
1 - 2 H p Ä p + q Ä qL + 4 Hq Ä qL H p Ä pL
1 - 2 H p Ä p + q Ä qL + 4 Hq × pL Hq Ä pL

“Notice  what  happens  when  you  multiply  two  outer  products  together.  Verify  that

step using abstract index notation!” Luna said curtly.

“Very well, Princess.

(4.11)Ia Ä bM IcÓ Ä dM � ai bm gm j c j dn gnk � Ibm gm j c jM Hai dn gnkL � Hb × cL IcÓ Ä dM
“No problem! Ehehehe!” Twilight laughed nervously. 

“Now clearly,  if  the two flip  vectors  were orthogonal,  then the second term

in  formula  4.9  would  be  zero.  This  is  an  important  sort  of  object,  so  let  us  decide

what it is.”

“Yes, let’s! I want to know what it is, Princess!”

“We shall! Since only two vectors define the operation, we should only need

to  think  about  the  plane  defined  by  the  two  vectors  and  ignore  any  perpendicular

vectors, correct?”

Twilight  nodded.  “It’s  easy  to  see  that  if  you  multiply  by  a  vector  that  is

perpendicular to both p and q, then the vector will not be altered.

“So  we  only  need  to  think  about  two  dimensions  to  understand  what  the

sequential  flip  does.  This  diagram  shows  the  result  of  flipping  p  about  F
p
.  The

purple vectors are p  and q.  The pink vectors show the result of performing the two

flips on p. 



p

q

FHpLp

FHqLFHpLp

“It’s  a  rotation  like  before,  only  now  we  can  make  any  angle!”  observed

Twilight.

Definition 4.6 : Planar Rotation

“Quite  so.  Two  nonorthogonal  vector  flips  produce  a  rotation  in  the  plane

spanned by the two flips.  I  will  define a  planar  rotation as a  product of  two vector

flips. It must be an orthogonal transformation because it is a product of orthogonal

transformations, but this is also easy to derive.”

On queue, Twilight was already writing on the wall. 

Proposition 4.3

(4.12)F
q

F
p

IF
q

F
p

MT � F
q

F
p

F
p

F
q

� F
q

F
q

� 1

“A seemingly more difficult problem is what you get when you multiply two

rotations. Consider two rotations R
v
Ó
w

 and R
pq

. Now clearly if the plane spanned by v
Ó

and  w  is  perpendicular  to  the  plane  spanned  by  p  and  q  (by  which  I  mean  every

vector in the one is perpendicular to every vector in the other), then clearly R
v
Ó
w

 and

R
pq

 commute with one another, so there is no way to simplify that case further.”

“Wait  a  minute,”  said  Twilight.  “How  is  it  possible  for  every  vector  in  one

plane  to  be  perpendicular  to  every  vector  in  another  plane?  I  can’t  imagine  how

that’s possible.”

“Sometimes  it  is  better  not  to  try  to  imagine  things.  That  can  become

unnecessarily confusing.”

“But they are both subspaces, right? So they would both have to include the

zero vector, right? But they could not have any other vectors in common.”



“But they are both subspaces, right? So they would both have to include the

zero vector, right? But they could not have any other vectors in common.”

“Yes, but that is alright because the zero vector is perpendicular to itself. But

no, they can have no other vectors in common, since any other vector would not be

perpendicular to itself.”

“But  my  question  is,  how  is  that  possible?  I  can’t  imagine  two  planes  that

intersect on only one point!”

“I see what you are asking, Twilight Sparkle! Two planes must intersect on a

line, right?”

“Yes.”

“Wrong! That is only in three dimensions.”

“But I thought today we were doing geometry. How can there be a plane in

four dimensions?”

“Just  as  easily  as  in  three  dimensions.  Maybe  even  easier!  In  four  or  more

dimensions, planes can intersect at a point.”

“I just don’t see how that’s possible.”

“You are trying to visualize it. Well you cannot. Sadly, your brain is not built

for  that,  Twilight  Sparkle!  That  is  just  why  you  must  not  take  your  intuitition  too

seriously. This is a case where it is wrong.

Now,  what  if  R
v
Ó
w

 and  R
pq

 take  place  in  the  same  plane?  A  rotation  in  two

give dimensions is defined by an angle, and two rotations in the same plane should

result  in  a  rotation  which  is  the  sum  of  their  angles.  That  should  be  clear  if  you

imagine it, but do you have an idea how you would prove it?”

“True, but let us prove it more formally now.”

“Ummmm, ok. Oh, oh! I know the answer! If all for vectors are in the same

plane, I can write R
pq

� R
a v

Ó
+b w, c v

Ó
+d w

. Then, I can do something like 



(4.13)
R

v
Ó
w

R
pq

R
v
Ó
w

-1 � F
w

F
v
Ó F

q
F

p
F

v
Ó F

w

� F
w

F
v
Ó Hc F

v
Ó + a F

w
L Ha F

v
Ó + b F

w
L F

v
Ó F

w
.ø

“You have got the right idea,” said Luan. “You may fill the rest in later if you

want.  The  important  bit  is  this:  two  rotations  in  a  plane  commute  and  a  planar

rotation is invariant under planar rotations in its own plane. This is exactly what you

learned earlier when you were flipping that picture. 

Finally  we  are  ready  for  the  case  in  which  the  two  rotations  are  neither

perpendicular nor parallel! Here’s the trick. If the two planes span a 3–dimensional

space, they must have a single 1–dimensional subspace in common, correct?”

“Yes,” said Twilight. 

“Now,” continued Luna, “Because you can rotate a planar rotation in its own

plane  without  changing  the  operator  at  all,  or  in  other  words,  because  a  planar

rotation  depends  on  a  plane  and  an  angle,  but  not  on  any  specific  vector,  we  may

now consider that R
v
Ó
w

 and R
pq

 have been rotated such that w � p  is a vector in that

shared subspace. That is what I have done in this diagram. 

You see? First rotate from v
Ó
 to p and then from p to q. Now find out what happens.”



Twilight wrote on the board.

Proposition 4.4

(4.14)F
q

F
p

F
p

F
v
Ó � F

q
F

v
Ó

“Why,” she said, “the result is another planar rotation!”

“That is right! But remember that the angles from v
Ó

 to p and p to q are only

half the angles of the rotations. It is a different way to think about rotations than you

might be used to. 

We know now, though, that products of vector flips are always either general

flips, products of planar rotations, or products of planar rotations and a flip. We are

not  yet  in  a  position  to  prove  this,  but  this  also  exhausts  all  the  orthogonal

transformations.”

“That  formula  4.9  is  a  little  bit  inconvenient,”  said  Twilight.  “I  mean  since

the angle of  the rotation is  twice the angle of  the two vectors.  Isn’t  there a formula

for a rotation in terms of two vectors that rotates one vector directly into another.”

Definition 4.7 : Symmetric operator, asymmetric operator

“Yes,” said Luna. “We suppose we could! That might even be a good lesson.

Well the first idea to introduce is that every operator can be split  into a symmetric

and asymmetric parts. This is very easy.

(4.15)B � BS + BA �
1

2

IB + B
T M +

1

2

IB - B
T M

The first part is the symmetric part and the second is the asymmetric part. You can

see this because if  you take the trace of the symmetric part,  it  comes out the same,

and if you take the trace of the asymmetric part, it comes out opposite. 

(4.16)

1

2

IB + B
T M

T

�
1

2

IBT
+ BM � BS

1

2

IB - B
T M

T

�
1

2

IBT
- BM � -BA

Symmetric and asymmetric operators have the interesting property that each retains

its  symmetry  or  asymmetry  under  orthogonal  transformations.  You  can  see  this

pretty simply with the orthogonal transformation O. 



(4.17)
IO BS O

T MT � O
T T

B
S

T
O

T � O BS O
T

IO BA O
T MT � O

T T

B
A

T
O

T � -O BS O
T

You  see?  The  symmetric  part  stays  symmetric  and  the  asymmetric  part  stays

asymmetric!”

Twilight nodded. 

“If you were a mathematician, you would say that this shows symmetric and

asymmetric  operators  each  form  a  representation  of  the  group  of  orthogonal

matrices.” 

“Ok…”

“Some day you’ll think that’s terribly profound. Now I want you to separate

equation 4.9 into symmetric and asymmetric parts.”

Twilight wrote on the board. 

(4.18)1 - 2 HH p Ä p + q Ä qL - Hq × pL Hq Ä p + p Ä qLL + 2 Hq × pL Hq Ä p - p Ä qL
“The first two terms are the symmetric part,  and the last is  the asymmetric

part,” she said.

“Let us say this represents a rotation about the angle Θ.  And let  us define a

new vector  r
Ó

 which differs  from p  by  the  angle  Θ.  The problem is  now to  somehow

rewrite R
pq

 expression in terms of p and r
Ó
.

Look  at  the  asymmetric  term  first.  We  know  that  p × q  is  equal  to  cosHΘ � 2L.
Now look at the operator q Ä p - p Ä q.  This is actually a great opportunity to think

of operators as vectors. What is the length of that operator, conceived as a vector?”

Twilight wrote on the wall. 

TrHHq Ä p - p Ä qL Hq Ä p - p Ä qLL
� TrH2 Hq × pL q Ä p - Hq × qL p Ä p - H p × pL q Ä q

“The  trace  of  a  outer  product  of  vectors  is  their  inner  product,”  she  said.

“And there will  be a factor of 2  in there which I can take out of the square root.  So

therefore, 



“The  trace  of  a  outer  product  of  vectors  is  their  inner  product,”  she  said.

“And there will  be a factor of 2  in there which I can take out of the square root.  So

therefore, 

2 H p × qL2
- 1 � 2 cosHΘ � 2L2

- 1 � 2 sinHΘ � 2L .ø

“So!” said  Luna, “just ignore the factor of 2  for now. You can think of the

asymmetric term as being like 2 cosI Θ

2
M sinI Θ

2
M. Now remember the trig identity 

sinHΘL � 2 cos
Θ

2

sin
Θ

2

.

If sinHΘ � 2L is a lot like q Ä p - p Ä q, then we should expect that sinHΘL should be just

like  p Ä r
Ó

- r
Ó

Ä p.  That  means  we  can  replace  the  term  2 Hq × pL Hq Ä p - p Ä qL  with

r
Ó

Ä p - p Ä r
Ó
.

And  what  about  the  other  term?  Let  me  just  suggest  something  to  get  you

thinking a little more. A rotation matrix in two dimensions looks like this.

cosHΘL -sinHΘL
sinHΘL cosHΘL

You can verify that that works when you get home. So we’re trying to find something

that looks kind of like that, only it can work along some arbitrary two–dimensional

subspace of some higher–dimensional space. Make sense?”

“I guess so.”

“Now we already found the a part that looks like the sines in that matrix. We

need to find something that works like the cosines, right?”

“Ok…”

“So let  us  think of  the  second term in  expression RotationFormulaSplit

as  being  like  1 - cosHΘL.  That  way,  when  it  adds  to  the  identity  at  left  side  of

RotationFormulaSplit, it might works out to be a nice cosHΘL. Now recall the trig

identity 

1 - cosHΘL � 2 sin
Θ

2

2

.

So the second  term—the really complicated one—we can think of as being both like

1 - cosHΘL  and  also  like  2 sinI Θ

2
M2

.  But  that  means  we  could  also  think  a  similar

expression Hp Ä p + r
Ó

Ä r
ÓL - HrÓ × pL HrÓ Ä p + p Ä r

ÓL as being something like sinHΘL2. What

could  we  do  to  it  to  turn  it  into  something  more  like  1 - cosHΘL,  except  written  in

terms of p and r
Ó
? 
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2
M2

.  But  that  means  we  could  also  think  a  similar

expression Hp Ä p + r
Ó

Ä r
ÓL - HrÓ × pL HrÓ Ä p + p Ä r

ÓL as being something like sinHΘL2. What

could  we  do  to  it  to  turn  it  into  something  more  like  1 - cosHΘL,  except  written  in

terms of p and r
Ó
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Twilight said, “Err… this isn’t making a lot of sense. I mean how—”

“Twilight Sparkle, you must have faith in your teacher! Now follow my lead,”

Luna said sweetly. 

Twilight creased her brow and sighed a little. “Alright, Princess. Well if that

term  is  like  sinHΘL2  then  I  could  multiply  by  H1 - r
Ó

× pL � I1 - HrÓ × pL2M  because  the

denominator is equal to 1 - cosHΘL and the numerator is equal to 1 - cosHΘL2 � sinHΘL2.”

“That’s  right!  Exactly  what  I  was  thinking.  So  now  let  us  write  the  new

expression

(4.19)
1 - HH p Ä p + r

Ó
Ä r

ÓL - r
Ó

× p HrÓ Ä p + p Ä r
ÓLL H1 - r

Ó
× pL � I1 - HrÓ × pL2M +

HrÓ Ä p - p Ä r
ÓL ,

and there we have it!”

“Really?” said Twilight. “I don’t think you’ve proved that at all!”

“You  can  prove  it  is  right  by  confirming  that  it  works  the  same as  R
pq

,  but

that will not be a terribly enlightening exercise.”

Twilight nodded. “Er, ok. It was a very strange process we used to arrive at

ind and it’s actually not a very nice–looking formula in comparison to the other one.

Maybe it makes more sense to think of rotations in terms of half the rotation angle,

since they multiply so nicely that way.”

“Very good! But deriving the new formula was a good exercise because you

learned a valuable lesson. I did not actually derive that expression. I simply made a

bunch of  completely extremely suspicious leaps of  fancy and constructed a formula

based on that. Then I verified that it was the correct formula.”

“What exactly is the lesson?”

“That you can do that.”



“Ohhhh.”

“Does this equation look scary to you?” 

“A little, Princess.” 

“But but not terrifying.”

“No.” 

“Why not?”

“Because—I understand what the equation means and what it’s for.”

“Right. The fact that it looks complicated is incidental for you now. It’s a tool

that  you  know  how  to  use,  and  I  gave  you  some  analogies  to  help  make  it  seem

familiar. A bit of mathematical mythology.”

“Yes, you did, Princess. Thank you!” 

“That’s enough for this morning I think.” said Luna after a slightly awkward

pause.  “Therefore,  I  will  see  you  tomorrow.”  Her  horn  began  to  glow  as  she

summoned up a black hole.

“Wait!” said Twilight. 

“What is it?” asked Luna

“Well I was wondering if we could talk about something else for a moment.” 

“Why, what else would we ever wish to talk about?” 

“I was just wondering how things were going with you.” 

“Going?” Luna seemed confused for a moment. “Well, I just started reading

this book on algebraic geometry…” 

“No!”  yelped  Twilight  before  catching  herself  and  calming  down.  “No…  I

mean, how are you feeling? Did you have a good night and morning?”

Luna  looked  confused  for  a  minute.  “Good  morning…  good  night…  Hmm.

Yes. Yes, I think I did. Well! Thank you, Twilight Sparkle! I’m glad we had this talk!”



“No! That wasn’t—” but Luna had already disappeared in a flash of gravitons.

“… a real talk.” Twilight stompped her hoof. “She is just impossible!”


