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Unit 1: Space

Lesson 1- Algebra

Day 3- Inner and Outer Products

The  next  morning  at  dawn  Twilight  dutifully  appeared  in  the  Canterlot

Castle courtyard. During peacetime the gates were open and there were a few ponies

around sight–seeing On business. The sun was not quite up and she could see a tiny

dark speck at the top of a tower, keeping watch over the night. 

She  was  tired  from  not  being  able  to  sleep  in  after  her  all-night  studying

session  the  other  day,  but  she  didn’t  want  to  do  anything  that  might  make  Luna

cause  more  trouble.  It  was  not  a  terribly  great  distance  to  the  Canterlot  but  it  was

not the easiest commute to make every day. However, there was little one could do

when a princess demands her presence.

Presently Celestia alighted next to her sister on the tower to cast the spell to

make the sun rise. Soon after, Luna gracefully floated down into the courtyard.

“Good morning, disciple Twilight Sparkle. Are you ready?” 

“Yes,  I  mean  such  a  lovely  morning…  who  wouldn’t  be  ready  for

mathematics at this time?” said Twilight with a hint of sarcasm. 

“Lovely  morning?  Well  I  admit  it  is  one  of  my  sister’s  better  dawns  but  to

tell you the truth I do not think she put as much effort into it as she could have!”

“Er, it was a lovely night too I mean! I could tell that you worked hard at it.”



Luna smiled. “Why thank you! That is right, I did!

Now, today we'll take just a little step closer to geometry. Today I will begin

to show you how Linear Algebra can take on a geometrical interpretation. Now the

other  day  you  suggested  that  a  vector  might  be  a  thing  with  a  magnitude  and

direction,  which  was,  of  course,  completely  wrong.  It's  not,  of  course,  but  let  us

think  about  things  which  do  have  a  magnitude  and  direction  and  think  about  how

our theory of vectors can apply to them.”

“So, like velocities and accelerations.”

“Yes, like those. So what is missing from our theory of vectors?”

“I don’t know.”

“Everything!  Our  vectors  have  neither  a  magnitude  nor  direction!  That  is

another reason you should never define a vector that way.”

“How can you say they don’t have a magnitude and direction? It seems like

they do.”

“What  would  a  magnitude  be?  At  the  very  least,  it  would  be  a  function

V ® R  that tells how to come up with a length for each vector. But there is nothing

like that in the definition! And as for a direction, just consider this example in R2.”

Luna  summoned  a  block  of  chalk,  kicked  off  a  piece  with  her  forehoof,  and  wrote

directly upon the inner wall of the Canterlot courtyard.

v = 81, 0< w = 81, 1 � 10<

M =
1 -20

0 1

You can see that v and w may look like they have nearly the same direction, but now 

M v = 81, 0< M w = 81, -1 � 10<
The  result  of  M  applied  to  them  is  that  they  now  look  like  they  are  in  almost

opposite directions. Remember how all M  induces an isomorphism from R2 to itself,

so the relationship of the vectors before applying it is no more real than after. This

just shows that a vector space on its own has no concept of angels.”



“Wait a minute… what’s that?”

“What?” 

“That square of numbers you called M !”

“Oh dear… did I forget to tell you about matrices?”

“Well  actually  I  do  know  what  a  matrix  is,  but  I  want  to  hear  your

explanation.”

“Very well!” said Luna, who smiled slightly at the flattery. “We know we can

define  a  linear  transformation Z : V ® W  by  what  it  does  to  each basis  vector  in  V ,

right?  This  is  possible  because,  since linear  combinations on a  basis  define vectors

uniquely, a map on a basis uniquely defines a map on V  without ever trying to send

the same vector to different places. 

Say that I define a map Z : V ® W  by v
Ó

i Þ Ωi. In other words, each v
Ó

i  is sent

by M  to the corresponding Ωi. The v
Ó

i together form a basis in V , but the Ωi might not

form a basis in W . I can now write Z as 

(3.1)Z Ha1 v
Ó

1 + a2 v
Ó

2 …L � a1 Ω1 + a2 Ω2 + …

where I have written little arrow on top of the vectors because otherwise this will get

confusing. 

If V  is n-dimensional and W  is m-dimensional, the linear map must define n

vectors, each with m components. That means there are m n components in total that

are required to specify the linear transformation, you see?”

“Yes.”

Definition 3.1 : Matrix

“So  just  as  you  can  denote  a  vector  as  a  list  of  length  n,  you  can  denote  a

linear transformation by an m�n box, which is called a matrix. Normally this is done

with the components of each Ωi written vertically like so, you see?”

Z �
z11 z12 …

z21 z22 …

» » ¸

�
Ω11 Ω21 …

Ω12 Ω22 …

» » ¸



where zi j means the jth column of the ith row of Z.”

“It  seems  a  little  bit  confusing,”  said  Twilight,  “that  the  indices  on  the

components of Z are reversed relative to those on the Ωi.”

“It  is  confusing,  but  that  is  the  convention.  So  watch  out  Twilight  Sparkle!

Now find the multiplication rule for Z  in terms of the components of the vectors in

W . You may use wi to represent a basis in W .”

Twilight broke off her own piece of chalk. “I can start by writing each Ωi  in

terms of its components using the basis wi. 

(3.2)
M Ha1 v

Ó
1 + a2 v

Ó
2 …L � a1 Ω1 + a2 Ω2 + …

� a1 HΩ11 w1 + Ω21 w2 + …L + a2 HΩ12 w1 + Ω22 w2 + …L + …

then I replace the Ωs with zs.”

(3.3)
� a1 Hz11 w1 + z12 w2 + …L + a2 Hz21 w1 + z22 w2 + …L + …

� Ha1 z11 + a2 z21 + …L w1 + Ha1 z12 + a2 z22 + …L w2 + …

Proposition 3.1

“So,”  said  Twilight,  each  row  of  the  matrix  defines  something  like  a  linear

combination  on  the  components  of  ai.  However,  the  ai  and  zi j  are  numbers,  not

vectors, so it’s not quite the same.”

“Correct. Actually, it is not bad at all that I forgot to tell you about matrices

yesterday because this  is  just  sort  of  operation we need to  give vectors  magnitudes

and directions. I now define the dot product. 

(3.4)
x × y � â

i

xi yi

you  just  sum  the  product  of  the  components  of  two  vectors.  Now  we  can  redefine

matrix multiplication like so:

(3.5)Z x � 8zÓ1, z
Ó

2, …< x � 8zÓ1 × x, z
Ó

2 × x, …<
where now, each row in the matrix is a kind of vector rather than each column.”

“That’s much less confusing.”



“And it gives us a notion of length too.”

“Yes.  If  this  were  a  vector  in  Euclidean  space,  then  the  length  of  a  line

segment is 

(3.6)ÈÈ x ÈÈ � x × x � x
1

2
+ x

2

2
+ x

3

2

by the Pythagorean theorem.”

“The dot product rule. This rule also give us a concept of an angle. Think of

two unit vectors p and q. This diagram shows that their dot product will be related to

the angle between them. 

p

q

x

y

their dot product would be given by 

p × q � p1 q1 + p2 q2 � p1 q1 + 0 � ÈÈ p ÈÈ q1 .

so  you  see  that  only  the  part  of  q  which  is  parallel  to  p  contributes  to  their  dot

product. and if q were orthogonal to p, then the dot product would be zero. That will

become our definition of orthogonality soon. 

Twilight said, “So the angle would be given by

(3.7)cosHΘL � p × q .ø

but does this diagram really give the right idea? You’ve actually drawn it so that one

of  the  vectors  is  along  an  axis  to  make  the  conclusion  obvious,  but  is  that  true  in

general?”

“That  is  a  good  question.  If  neither  vector  was  aligned  to  an  axis,  then  we

could  just  draw  rotated  axes  to  align  with  either  of  the  vectors  and  the  conclusion

would  be  the  same.  Of  course,  that  depends  on  knowing  that  the  dot  product  is

rotation–independent.  In  the  future,  we  will  construct  spaces  which  we  know  are

rotation independent,  and then we will  find that  some algebraic  expression has  an

especially simple form when rotated in alignment with some axis. Since the space is

rotation–independent,  we  will  know  that  it  does  not  actually  matter  how  the

expression is aligned, and will make general conclusions from it.



“That  is  a  good  question.  If  neither  vector  was  aligned  to  an  axis,  then  we

could  just  draw  rotated  axes  to  align  with  either  of  the  vectors  and  the  conclusion

would  be  the  same.  Of  course,  that  depends  on  knowing  that  the  dot  product  is

rotation–independent.  In  the  future,  we  will  construct  spaces  which  we  know  are

rotation independent,  and then we will  find that  some algebraic  expression has  an

especially simple form when rotated in alignment with some axis. Since the space is

rotation–independent,  we  will  know  that  it  does  not  actually  matter  how  the

expression is aligned, and will make general conclusions from it.

We  must  now  ponder  upon  how  this  idea  of  a  dot  product  can  be

generalized. We have an idea of  the kind  of  thing we want,  but we do not have the

general  idea  yet.  The  dot  product  is  not  a  real  thing  because  it  depends  on  the

particular  basis—two  vectors  will  have  a  different  dot  product  with  one  another  if

you  just  change  the  basis  of  the  space.  So  we  need  to  search  for  something  more

objective.”

Twilight  nodded.  “But  wait  a  minute—is  that  really  necessary?  The  dot

product works, right? Why don’t we just say that one basis is correct and use it? This

is  all  too  esoteric.  That’s  exactly  what  I  had  trouble  with  in  physics—there  are  so

many concepts that are not, strictly speaking, necessary at all!”

Definition 3.2 : Operator

Suppose I define a linear map H : V ® V—a linear map from a space to itself is called

an  operator,  by  the  way—which  performs  a  coordinate  transform  on  V .  In  other

words,  it  is  defined  as  a  map  from  one  basis  of  V  to  another.  It  is  therefore

invertible, correct?”

“Now, as I was saying, I defined the operator H . What do you get if you want

to change coordinates yet preserve the value of the dot product?”

“I  would  have  to  multiply  both  vectors  by  H .  That  would  be  a  change  in

coordinates. But then I would have to also multiply each by H-1, since otherwise the

dot product would not be preserved.”

x × y � IH-1
H xM × IH-1

H yM
“Right.  You can think  of  the  H x

Ó
 and H y  as  being  the  new vectors  and the

two  H-1s  as  somehow  modifying  the  dot  product  itself.  In  order  to  write  this

expression  in  a  more  understandable  way,  let  us  think  about  something  simpler.

Suppose we have an invertable operator M ¢ and we define a new operator M  by 

HM ¢
xL × y � x × HM yL ."

“Wait  a  minute.  Are  you  sure  there  must  actually  be  an  operator  M  which

can fit in there?” 



“Wait  a  minute.  Are  you  sure  there  must  actually  be  an  operator  M  which

can fit in there?” 

“Yes.  M ¢  behaves  just  like  a  change  of  basis  on  x
Ó
,  so  there  must  be  some

change of basis on y that produces the same result in the end. Your job is to find the

relationship between M  and M ¢.”

Twilight was perplexed. “I’m really not sure how I’d go about this.”

“Let  me  give  you  another  way  of  thinking  about  it.  You  know  how  to

multiply  a  vector  by  an  operator  on  the  left.  Imagine  now  that  you  can  multiply  a

vector on the right. instead, and you want to figure out how to do it.”

Twilight  stared  at  the  wall  for  a  moment,  and  then  she  smiled.  “I  have  it!

Right  multiplication  by  a  matrix  can  be  defined  by  the  associativity  rule.  In  other

words,

Hx M L y � x HM yL .ø

“Go on!” said Luna.

“I just have to expand that expression out and see if I can find an equivalent 

(3.8)

x M y � x M Hy1 v
Ó

1 + y2 v
Ó

2 …L �

Hx1 v
Ó

1 + x2 v
Ó

2 + …L HHm11 y1 + m21 y2 + …L v
Ó

1 + Hm12 y1 + m22 y2 + …L v
Ó

2 + …L
“Oh dear,  this is  going to get messy…” Twilight stopped. She could feel  her

four ankles quiver. “Somehow I’ll have to factor out Hy1 v
Ó

1 + y2 v
Ó

2 …L, and then what’s

leftover will be x
Ó

M .” 

Luna  whispered  in  her  ear.  “Stay  calm  and  do  this  problem  for  me.  I

promise I will show you something wonderful when you are done!”

Twilight blushed and wondered what Luna meant. However, her words had

brought some of her confidence back. “Alright…” whimpered Twilight. 

“Try writing it as an summand,” Luna suggested. 

With trepidation, Twilight wrote on the wall again. 



(3.9)� â
i

xi v
Ó

i â
j

â
k

m jk yk v
Ó

j � â
i

â
j

â
k

xi m jk yk v
Ó

i v
Ó

j

“There, you see!” said Luna. “You factored that whole thing out and it was as

easy as moving a summand sign to the left.  Now remember, by the rules of the dot

product, v
Ó

i v
Ó

j � 0 unless i � j.”

Twilight closed her eyes and tried to think about what Luna said. This would

mean  that  she  could  set  j � i  in  the  summand  and  remove  the  sum  over  j!  She

wrote 

(3.10)
â

i

â
j

â
k

xi m jk yk v
Ó

i v
Ó

j � â
i

â
k

xi mik yk v
Ó

i v
Ó

i .

“That is it!” whispered Luna. 

“But now what?” 

“Are you sure you want me to tell you?”

Twilight’s heart was pounding.

(3.11)

â
i

â
k

xi mik yk v
Ó

i v
Ó

i �

â
i

â
j

â
k

xi mi j yk v
Ó

k v
Ó

j � â
i

â
k

xi mi j v
Ó

j â
k

yk v
Ó

k

“Bravo!” said Luna. “you have the right multiplication rule!”

“It’s just like left multiplication… except that the sum is over the columns of

the matrix rather than the rows.”

“Exactly. Good disciple!”

Twilight  smiled in  spite  of  herself.  “And what  was  the  wonderful  thing you

were going to show me?”

Luna nodded mysteriously. “I will show you.

Definition 3.3 : Abstract index notation

You had been writing vectors something Úi xi v
Ó

i  for your proof. This notation is very

redundant.  You  know  that  a  vector  is  a  sum  of  components  over  a  basis.  All  that

matters  is  the  components.  So,  get  rid  of  the  v
Ó

i  and  get  rid  of  the  Úi.  Just  write  a

vector as xi. The i is now a free index. I have used free indices earlier today, but now

they have a special meaning. It means spatial vector. 



You had been writing vectors something Úi xi v
Ó

i  for your proof. This notation is very

redundant.  You  know  that  a  vector  is  a  sum  of  components  over  a  basis.  All  that

matters  is  the  components.  So,  get  rid  of  the  v
Ó

i  and  get  rid  of  the  Úi.  Just  write  a

vector as xi. The i is now a free index. I have used free indices earlier today, but now

they have a special meaning. It means spatial vector. 

We have also been writing something like Új Mi j x j  to denote the product of

M  with x
Ó
. But we know how to matrix multiply, so there is no need to write it out so

explicitly.  Instead,  write  Mi j x j  and  assume  that  the  repeated  index  j  must  be

summed  over.  The  expression  has  one  free  index,  which  makes  it  a  spatial  vector.

Then we just write a linear operator as Mi j, and the two free indices indicate that it is

a linear operator.”

“Isn’t  it  technically a matrix rather than a linear operator?” asked Twilight.

“In writing each object with an index aren’t we implicitly denoting the object as an

array  with  individual  parts?  I  thought  we  always  wanted  to  be  careful  not  do

anything that is basis dependent.”

“Historically,  you  are  correct.  But  the  notation  does  not  need  to  be

interpreted in this way. It is true that we do not wish to do anything that depends on

a particular basis and in fact we do not even know if every vector space has a basis.

However,  we  can always  think of  the  indices  as  simply  denoting the  kind of  object

and the kind of multiplication rather than an actual index over an array.”

“I see.”

“I  want  you  to  try  to  prove  the  same  thing  you  just  did  using  the  abstract

index  notation.  Try  to  show  how  right–multiplication  of  linear  operators  works.”

Luna then wrote

(3.12)xi Mi j

¢
y j � IM ji xiM y j

Twilight  squinted  at  the  expression  for  a  moment.  “Well  now  there’s

nothing  to  prove!  The  way  that  the  matrix  multiplication  is  written  makes  it

obvious! M ¢ and M  are just transposes of one another.” 

“What have you learned, Twilight Sparkle?”

“I went through all that horrible algebra with summands when I could have

just done… nothing!”

“Can you interpret a more generally applicable lesson to this?”

Twilight hung her head. “I won’t discount the power of abstraction. I’ll try to

learn how to use the best mental tools.” 



Twilight hung her head. “I won’t discount the power of abstraction. I’ll try to

learn how to use the best mental tools.” 

“That is right, Twilight Sparkle!” 

Luna  turned  back  to  the  wall  and  with  a  wave  of  her  hoof  said,  “Now  to

return to the generalization of the dot product. As we decided,

x × y � IH-1
H xM × IH-1

H yM �
Jx H

T IH-1MT
H

-1
H yN � Hxe HdeL IH-1M

cd
IH-1M

cb
HHba yaL

I have written this in abstract index notation now.

Changing the basis results in two new vectors, H y and x
Ó

H
T , as well as a new

operator  IH-1MT
H

-1,  which  looks  like  the  product  of  an  operator  with  its  own

transpose.  So  we can think of  the  more  general  form of  the  dot  product,  which we

shall call the inner product. It will work something like that.

Let’s define

(3.13)gab � mca mcb

This is a linear map which is a square of two linear maps. You will now prove some

properties of gab. You may use whichever notation you find most convenient. 

Proposition 3.2

The first property is symmetry. You must show that x
Ó

g y � y g x
Ó
.”

Twilight wrote 

(3.14)xa gab yb � xa mca mcb yb � yb mcb mca xa � ya mca mcb xb � ya gab xb

and  said,  “For  one  of  the  steps,  I  had  to  rename  some  of  the  repeated  indices—of

course that’s fine because the letter on the indices is meaningless.”

Proposition 3.3

“The  second  property,”  said  Luna,  “is  positive  definiteness.  That  means

v
Ó

g v
Ó

³ 0, and it’s only zero when v
Ó � 0. 

Twilight said, “That one is easy. You can clearly see that v
Ó

g v
Ó
 is a dot product

of a vector with itself.



Twilight said, “That one is easy. You can clearly see that v
Ó

g v
Ó
 is a dot product

of a vector with itself.

(3.15)xa gab vb � va mca mcb vb � Hmca vaL Hmcb vbL
The dot  product  of  a  vector  with itself  is  a  sum of  squares,  which we know

will always positive, at least for real numbers.” 

Definition 3.4 : Inner-product space

“Yes,  and we will  only  bother  to  think  about  real  vector  spaces  for  now,  so

that  is  the  most  general  result  we  need.  However,  eventually  we  shall  want  to

generalize the concept. A real inner-product space is a vector space V  over R which

comes with a symmetric, positive definite linear map M : V �V ® R. If v, w Î V  then

define 

(3.16)v
Ó

× w � va gab wb � v
Ó

g w ,

Definition 3.5 : Quadratic form

and  the  operator  g  defines  the  linear  map.  The  positive–definiteness  of  g  implies

that it is invertable. This is what I shall mean when I use the dot notation from now

on.  The  operator  g  which  defines  the  inner  product  is  called  a  positive  definite

quadratic form. 

Definition 3.6 : Length, unit vector

And finally  we have an objective way to  talk  about  lengths and angles.  The

length of a vector is x
Ó
 is written ÈÈ x

Ó ÈÈ and given by x
Ó

× x
Ó

. A vector whose length is 1

is a unit vector.

Definition 3.7 : Parallel, orthogonal

Two unit vectors p and q are orthogonal if p × q � 0 and parallel if p × q � 1. 

Definition 3.8 : Orthonormal basis

Finally, these concepts allow us to construct a basis for our space that more

closely  resembles  the  familiar  one  from  geometry.  In  geometry,  you  have  the  x,  y,

and  z  axes,  and  they  are  normally  perpendicular  to  one  another.  And  advancing

along the  x-coordinate  by  one  unit  is  equivalent  to  a  distance  of  one  unit.  Now we

know how to  make  something like  that  because  we  know how to  require  that  each

vector in a basis is perpendicular to all the others and have a length of one.”

Twilight  began  to  fume  with  frustration  when  she  heard  that.  “That  is  so

obvious  it  doesn’t  make sense  to  even consider  other  ways  of  doing it!  Why do  we

have to go through so much math just to end up constructing the most obvious thing

ever??” wailed Twilight.

“That  is  just  a  cultural  bias.  A  few  thousand  years  ago,  when  mathematics

was getting started, nobody had even heard of orthonormal bases!”



“That  is  just  a  cultural  bias.  A  few  thousand  years  ago,  when  mathematics

was getting started, nobody had even heard of orthonormal bases!”

Twilight groaned and let her head droop to the floor.

“Now  now,”  Luna  said  sweetly,  “What  was  the  lesson  you  just  told  me  you

had learned a few minutes ago?”

Twilight sighed. “I will learn the tools because they will make things clearer

in the end.”

“That is right! Do not forget so quickly, Twilight Sparkle.

Proposition 3.4

Now  I  want  you  to  prove  that  an  orthonormal  set  of  vectors  is  linearly

independent. This should be an easy one!”

Twilight thought for a moment and tried to find the perfect way to state the

proof. “If two vectors, a and b, are orthogonal, then

Ia + bM × Ia + bM � a × a + b × b + a × b + b × a � a × a + b × b .

Since the inner product is linear, it distributes over addition. The terms a × b and b × a

are  zero  because  the  vectors  are  orthogonal.  That  leaves  a × a + b × b.  Because  the

inner product is positive definite, the only way that this expression could be zero is if

both  a  and  b  are  zero.  In  other  words,  two  orthogonal  vectors  are  linearly

independent. If any two orthogonal vectors are linearly independent, it follows that

an orthogonal set of vectors must be linearly independent.”

“Quite correct, Twilight Sparkle.

Proposition 3.5

“The last thing we shall prove this pleasant but somewhat garish morning is

that an orthonormal basis always exists. To do that we shall have to think a little bit

about projection operators.

By a projection of v
Ó

 onto p, I mean that one finds the component of v
Ó

 in the

direction of  p.  I  will  say  that  p  is  a  unit  vector.  This  will  make the problem easier.

What do you think the formula for that is?”

“From your diagram, it  seems as if  p × v
Ó

 ought to be the length of  the result

we want, and p is in the right direction. So I think the answer is p Hp × v
ÓL.”



“From your diagram, it  seems as if  p × v
Ó

 ought to be the length of  the result

we want, and p is in the right direction. So I think the answer is p Hp × v
ÓL.”

Definition 3.9 : Projection

“That is right, and that is how a projection shall be defined.

Now, is the projection a linear operation on v
Ó
?”

“It  is.  It  is  easy  to  see  that  it  would  distribute  over  addition  and  commute

with scalars.”

“Let  us  call  the  operator  PÈÈHpL.  Can  you  write  a  formula  for  this  operator

acting on v
Ó
?”

“I think I can using the abstract index notation. 

(3.17)PÈÈH pL v
Ó � pa pc gcb vb

That’s  an  inner  product—a  scalar—multiplied  by  a  vector.  The  two  operations

together work out like a linear map.”

Definition 3.10 : Outer product

“Yes. Now let me define another kind of product. The outer product is a way

of multiplying two vectors in an inner–product space to form a linear map. Here is

the definition. 

v
Ó

Ä w � va wc gcb

I  put  the  g  matrix  in  there  because  now,  when  you  multiply  by  a  vector,

multiplication  by  w  works  like  a  proper  inner  product.  Otherwise  the  result  would

not be coordinate–independent. And now we can write PÈÈHpL as 

(3.18)PÈÈH pL v
Ó � p Ä p v

Ó
.

Make sense?”

Twilight  nodded.  “Yes,  but  if  you  can  multiply  two  vectors  to  produce  a

linear  map,  shouldn’t  you  we  able  to  multiply  more  of  them  together  to  produce  a

new kind of object?”

“Very  good  question!  You  can  indeed  do  that.  However,  we  shall  save  the

more general  theory for another day.  My next question is,  suppose you have a unit

vector  p  and  you  wish  to  project  a  vector  v
Ó

 so  that  it  is  perpendicular  to  p  rather

than parallel? Show me the operator PÞHpL for that.”



“Very  good  question!  You  can  indeed  do  that.  However,  we  shall  save  the

more general  theory for another day.  My next question is,  suppose you have a unit

vector  p  and  you  wish  to  project  a  vector  v
Ó

 so  that  it  is  perpendicular  to  p  rather

than parallel? Show me the operator PÞHpL for that.”

“Well I want an operator which gives v
Ó
 if v

Ó
 and p are perpendicular and gives

0 if they’re parallel. That should be enough to define the operator.” She then wrote it

out on the stone floor. 

v
Ó

× p � 0 Þ PÞH pL v
Ó � v

Ó
v
Ó

× p � ÈÈ v ÈÈ Þ PÞH pL v
Ó � 0

“That  should  be  enough to  define  how the  operator  works,”  she  said.  Now if  I  just

wrote something like  

(3.19)PÞH pL � 1 - PÈÈH pL � 1 - p Ä p ,

Then this has the desired properties. It just subtracts the parallel part from v
Ó
.”

“Indeed. Suppose that you had several unit  vectors p
1
,  p

2
,  and so on which

are all orthogonal, and you wish to project a vector v
Ó
 so that it is perpendicular to all

of them?”

“That’s not a difficult generalization at all. That would just be 

(3.20)PÞH p
1
, p

2
, …L � 1 - p

1
Ä p

1
- p

2
Ä p

2
- … .

“Can  you  use  that  in  the  proof  that  every  inner  product  space  has  an

orthonormal basis?”

“That seems quite feasible now. Given a basis v1, v2, …, I just define 

(3.21)

p
1

�
v
Ó

1

ÈÈ v
Ó

1 ÈÈ
p

2
� normalizeHPÞH p

1
L v

Ó
2L

p
3

� normalizeHPÞH p
1
, p

2
L v

Ó
3L

p
4

� normalizeHPÞH p
1
, p

2
, p

3
L v

Ó
4L

and so on. The vectors p
i
 will form an orthonormal basis. And of course I’ve written

normalize  to  indicate  that  the  vector  must  be  normalized  by  dividing  it  by  its  own

norm.”

“Exactly!  You  have  discovered  what  is  called  the  Graham-Schmidt  process.

There are  some caveats  to  this  proof.  Because the proof  is  recursive,  it  only  proves

that a vector space with a countable  basis has an orthonormal basis. However, that

is good enough for our purposes.”



“Exactly!  You  have  discovered  what  is  called  the  Graham-Schmidt  process.

There are  some caveats  to  this  proof.  Because the proof  is  recursive,  it  only  proves

that a vector space with a countable  basis has an orthonormal basis. However, that

is good enough for our purposes.”

“So,”  said  twilight,  “we  have  finally  reached  the  point  where  we  can  do

ninth–grade geometry.”

“That is right!” said Luna, not appearing to have caught Twilight’s sarcasm,

“and to think all those poor young ponies think they’re doing math every day when

they really don’t know what they’re doing at all!”

Twilight sighed to herself. “Well the books I tried to read did say a lot about

operators, and scalars, and matrices. So I suppose I must be learning something.”

“Of course you are.” Luna said with a flick of her mane. “But now I must now

be off. Farewell, Twilight Sparkle.” Luna then bolted aloft.

“Wait!”  yelled Twilight.  She at  least wanted to thank Luna for being such a

dedicated teacher and putting up with her complaints. But it was too late. Luna was

merely a speck in the sky and she soon disappeared behind the mountain.

On her  way back  home,  Twilight  mused.  Luna could  be  a  frustrating pony,

but Twilight had enjoyed the morning in spite of herself. She had hoped to ask Luna

more about how the material they had studied today actually related to physics, but

Luna had left  so  abruptly  that  she hadn’t  had the chance.  It  seemed like  Luna was

trying to be friendly with her,  but was not comfortable speaking about topics other

than math. She wondered if  she might be able to do more to bring Luna out of her

shell next time. 


