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Unit 1: Space

Lesson 1- Algebra

Day 2- Vectors

Luna  had  not  said  where  their  meetings  were  to  take  place,  so  Twilight

hoped she was going to the right place by going to the Canterlot archives again. She

did not want to anger Luna by not showing up, as she was never quite sure how the

goddess,  who  had  after  all  spent  1000 years  an  the  moon  without  interacting  with

other ponies, would react to anything. 

She  heard  a  commotion  as  soon  as  she  entered.  Dreading  what  she  might

find,  she  sped  to  a  gallop  and  raced  towards  it.  The  center  of  the  library  was

ransacked and a tornado of books whirled above them. Luna was right below it with

a number of cowering librarians in front of her.

“THAT  IS  THE  MOST  ILLOGICAL  THING  WE  HAVE  EVER  HEARD!

THERE IS BARELY ANY ROOM LEFT FOR NEW SUBJECTS AND THERE IS NOT

EVEN A PROPER CLASSIFICATION FOR MAGIC! AND STOP COWERING! STOP

FEARING ME OR I WILL TURN YOU ALL INTO LADYBUGS!”

“Princess  Luna!”  Twilight  screamed,  hoping  she  would  be  heard  over  the

gale.

When Luna looked over and saw her the tornado stopped and all the books

piled themselves into very tall stacks that reached near the ceiling.

“Hooray,  my  new  disciple  is  nigh!”  Luna  reared  with  joy  before  collecting

herself  and  resuming  her  ordinary  stiff,  regal  demeanor.  “These  ponies  were  just

explaining the Dewey decimal system to me.”



“Hooray,  my  new  disciple  is  nigh!”  Luna  reared  with  joy  before  collecting

herself  and  resuming  her  ordinary  stiff,  regal  demeanor.  “These  ponies  were  just

explaining the Dewey decimal system to me.”

“Hahaha, yes! I saw, Princess. I think next time if you just ask for the book

you want she’ll just get it for you.”

Luna nodded. “Oh! That would probably be more convenient for everyone.”

“I think so! Um, in fact, maybe next time we should meet in Canterlot Castle

instead of over here.”

“Yes,  why  not?  TOMORROW  WE  SHALL  MEET…  IN  CANTERLOT

CASTLE!”

“Shh! This is a library!”

“Sorry.  Anyway,  let  us  get  down  to  work!”  said  Luna  as  she  conjured  a

blackboard once again. A block of chalk appeared before them and Luna broke off a

small piece with her telekinesis. “The first thing to learn, if you want to do physics, is

Linear Algebra.”

“Um, what about everything we did yesterday?” asked Twilight.

“That was the zeroth thing you need to learn. Linear algebra give us the right

way  to  add  and  multiply  the  kinds  of  mathematical  objects  that  represent  physical

quantities.”

“Aren’t  physical quantities just numbers that are multiplied in the ordinary

way?”

“They can be, but not always. There are some things in physics that are just

ordinary  numbers,  but  more  generally  they  are  collections  of  numbers,  which  are

called  tensors.  Only  whole  tensors  can  be  multiplied  and  only  according  to  certain

rules.”

“Why is that?”

“It  all  follows  from  the  concept  of  space.  It  has  to  do  with  representation

theory  and  the  local  coordinate  invariance  of  space.  I  will  show  you  all  about  that

eventually. Anyway, just trust me for now.”

“Very well, Princess.”

“And  of  course  derivatives  and  integrals  are  linear  operators  as  well,  but

they act on function spaces, which are a more abstract kind of vector space.”



“And  of  course  derivatives  and  integrals  are  linear  operators  as  well,  but

they act on function spaces, which are a more abstract kind of vector space.”

Twilight felt like she was already dreading the lesson.

Definition 2.1 : Morphism

“Linear algebra is about vector spaces and about functions on vector spaces.

For  every  kind  of  object  in  mathematics  that  has  operations  defined  on  it,  like

addition  and  subtraction  it  is  also  possible  to  define  morphisms  between  different

objects.  These  are  functions  mapping  one  object  to  another  which  preserve  the

object’s characteristic operations. Did that make sense?”

“No.”

Definition 2.2 : Linear Map

“Well nevermind because you only need to understand linear maps for now.

These are functions between vector spaces that preserve vector space operations. In

other words, a function A : V ® W  is a linear map  between the vector spaces V  and

W  if 

(2.1)AHv + wL � AHvL + AHwL
(2.2)AHa vL � a AHvL

It  is  clear,  first  of  all,  that  linear  maps  only  exist  between  vector  spaces  over  the

same field, since in this equation, a has to be interpreted as an element in the fields

over which both V  and W  are defined. 

Now the interesting thing about linear map is that applying can be treated as a kind

of multiplication. Do you know how you would prove that? 

Twilight went to the board and levitated a bit of chalk. “I’d have to show that

function  composition  obeyed  the  three  properties  of  multiplication.  Left

distributivity  is  given  by  assumption  as  the  first  property  of  linear  maps.  Right

distributivity would require showing something like this. 

(2.3)HA + BL HvL � AHvL + BHvL ,

but I do not even know what A + B would mean.” 

“Is the sum of two linear maps, as you have defined it, a linear map?”

“If we take equation 2.3 as a definition, then it looks like it satisfies the right

properties.”



“If we take equation 2.3 as a definition, then it looks like it satisfies the right

properties.”

HA + BL Hv + wL � AHv + wL + BHv + wL �

AHvL + AHwL + BHvL + BHwL � HA + BL HvL + HA + BL HwL
HA + BL Ha vL � AHa vL + BHa vL � a AHvL + a BHvL � a HA + BL HvL

“So,”  said  Luna  with  a  satisfied  smile,  “you  have  learned  that  A + B  is  a

linear operator. But is it really a kind of addition?”

“Associativity  and  commutativity  clearly  hold  because  the  addition  of

operators  in  defined  in  terms  of  the  addition  of  vectors,  so  necessarily  these

properties carry over. 

There’s also an additive identity. That would be the map that sends every vector to

0.” 

“Which can be written as 0.” 

“Yes… as previously noted. And there are inverses too, because you can just

define  H- AL HvL � - AHvL.  So  there  is  a  kind  of  linear  operator  addition  and  right

multiplication by vectors distributes over it!”

“You have learned something important just now. You started out by writing

an  equation  about  adding  functions,  which  for  all  you  knew  was  meaningless,  and

asked, ‘is this true?’ You then showed how to interpret the equation and asserted the

reality of what you had discovered. That is one of the fun things about mathematics;

anything that is meaningful is real. Isn’t that wonderful”

“Sometimes I don’t know about your philosophy, Princess.”

“Of course it is wonderful, Twilight Sparkle! In any case, we know about left

and right distributivity. What about associativity?” 

“I’d have to prove something like this. 

(2.4)HAëBL HvL � AHBHvLL
But  I  don’t  see  how—oh  well  it’s  obvious.  That’s  just  the  definition  of  function

composition,  so  of  course  that’s  true.  It’s  also  a  statement  of  associativity  for

multiplication of A, B, and v.”



But  I  don’t  see  how—oh  well  it’s  obvious.  That’s  just  the  definition  of  function

composition,  so  of  course  that’s  true.  It’s  also  a  statement  of  associativity  for

multiplication of A, B, and v.”

“Exactly. It has nothing to do with linearity.

So now we do not have to write AHvL anymore. We can just write A v and say

that v has been multiplied by a linear map called A, which obeys the properties s

(2.5)
A Hv + wL � A v + A w

A a v � a A v

They distribute over addition (which is true of all multiplication) and they commute

with scalars. 

“This is confusing. We’re looking at the same thing in two different ways at

the same time. A function is something you do, but we’re looking at the function as

more of a thing now. 

“That  is  one  of  the  tricks  to  getting  really  good  at  mathematics.  Once  you

can think of  something as two different things at  the same time, you know you are

getting somewhere!”

Twilight  was  approaching  her  limit.  She  held  her  head  and  slowly  shook  it

back and forth as she tried to let the philosophy settle in. “Ooohhhhooohhh…”

“Do not let your brain shut down on me now, Twilight Sparkle! We are only

getting started!”

“Please Princess… no more of your philosophy today at least.” 

“For the rest of the day only proofs. Promise! The issue that will  preoccupy

us for now is  to characterize the linear operators,  especially what we can say about

their invert ability. 

Now, think of an expression that looks like this: 

(2.6)a1 v1 + a2 v2 + a3 v3 …

Definition 2.3 : Linear Combination

This  could  be  finite,  or  it  could  go  on  forever.  Each  vi  is  a  vector  and  each  ai  is  a

scalar  that  goes  with  the  corresponding  vi.  I  have  taken  a  set  S  of  vectors  that

includes all the vi, multiplied each one by its own scalar, and then summed them all

together. This is called a linear combination of S. 

More formally, you should think of a linear combination as being given by a

map from a set of vectors to a set of scalars. Expression 2.6 is more of a mnemonic,

but there are linear combinations that could not be written in that way.” 



More formally, you should think of a linear combination as being given by a

map from a set of vectors to a set of scalars. Expression 2.6 is more of a mnemonic,

but there are linear combinations that could not be written in that way.” 

“Why not?”

“Because  I  have  written  the  expression  as  if  S  was  a  countable  set,  but  it

might be uncountable.”

“What does that mean?”

Definition 2.4 : Countable and uncountable

“Oh dear, oh dear… well you asked for it! Countable means that a set can be

given  as  a  finite  or  infinite  list,  like  the  list  describing  the  sum  in  expression

[number]. Essentially a set is countable if it can be objectively mapped to the natural

numbers. A set is uncountable if it cannot.”

“Are  you  saying  that  there  are  degrees  of  infinity?”  asked  Twilight

skeptically.

Proposition 2.1

“Precisely so.  There are sets that are bigger than the natural numbers.  Just

as an example, I will show you that the range @0, 1L of real numbers is uncountable. 

The proof is quite simple. It is a proof by contradiction. Let us say we have

an infinite list þ of real numbers which, we hypothesize, contains all of them. We can

write it out in decimal form like so. 

0.00000000 …

0.01010101 …

0.12345678 …

0.92839477 …

It is always possible to construct a new real number n  which is not in the list. Start

with the first digit after the decimal point of n. Make sure it is different from the first

digit of the þ1.  Then you know, whatever the rest of the digits are, that it cannot be

equal  to  the  þ1.  Next,  make  sure  the  second  digit  of  n  is  different  from  the  second

digit of þ2. You then know that the new number cannot be equal to þ1  or þ2. Do you

see what happens?

“If you continue this procedure all the way down the list, you always end up

with a real number that’s not equal to any element of þ!”



“If you continue this procedure all the way down the list, you always end up

with a real number that’s not equal to any element of þ!”

“Right!  This  disproves  the  hypothesis  that  the  þ  contains  all  the  real

numbers.  And  since  we  made  no  restrictions  upon  þ,  this  proves  that  no  list  can

contain all the real numbers.”

Twilight groaned. “I thought you promised no more philosophy!”

Luna looked perplexed. “This is not philosophy. This is just the ordinary real

world!”

“Those are numbers, not reality.”

“Close enough! Just as an aside, I will tell you that the integers are countable

and so are the rational numbers.  You can think about how to prove that yourself  if

you want, since you do not actually need to know that.”

“Alright.” Twilight hoped she would never have to think about it again.

Definition 2.5 : Spanning set

“Back to linear algebra. The thing to talk about is the span of a set of vectors.

Think  of  an  ordered  set  of  vectors  S : 8v1, v2, v3, …<,  called  the  spanning  list,  and

think of all linear combinations of those vectors. This produces a vector space called

the span of S, which I will call V .”

“Why is it important that S be ordered?”

“Because now we can specify every element of V  as an ordered list of scalars.

The  ordering  defines  the  mapping.  That  is  why,  in  three–dimensional  space,  you

may write vectors as 

x � 8x1, x2, x3<
where the xi are all real numbers.”

“This  is  a  very  convenient  way  to  think  about  a  vector  space.  Normally

something  like  this  will  define  almost  every  vector  space—as  the  span  of  a  set  of

vectors.  Similarly,  it  will  be much easier to think concretely about linear maps.  We

just have to think about how the linear map acts upon a spanning list. 

By the way, I have not proved that V  is a vector space, but can you see why that is? 



“It’s obvious.”

Definition 2.6 : Linear independence, basis

“Good. Next we need to talk about linear independence. Now suppose I had

a linear combination of S with the condition that 

0 � a1 v1 + a1 v2 + a1 v3 …

Clearly there is always a trivial solution to this equation if all ai � 0 for all i. What we

are interested in is a nontrivial solution. In other words, for some i, ai ¹ 0. If there is

such  a  solution  then  S  is  said  linearly  dependent.  Otherwise,  it  is  linearly

independent. If a spanning set S  is linearly independent and spans a vector space V ,

then S is called a basis for V .”

Twilight nodded. 

Proposition 2.2

“The  nice  thing  about  a  basis  is  that  every  vector  in  the  space  it  spans  is

uniquely given as a linear combination of the basis. 

Now assume there are two distinct linear combinations, which I will write as

ai and ai, which produce the same vector w. 

w � â
i

ai vi � â
i

ai vi

I can just subtract one linear combination from the other to get zero.

w - w � 0 � â
i

Hai - aiL vi

which proves that S is not linearly independent. You see?”

“Yes.”

Corollary 2.3

“This also proves that if S  is a list of vectors and an extra vector w in spanHSL
is  appended to S,  then the result  will  no longer be linearly independent. There will

be  two  ways  to  produce  w:  itself,  and,  because  w  is  in  spanHSL,  there  must  also  be

some linear combination of S that produces it.”

Twilight  nodded.  “But  I  need  to  develop  some  intuition  about  these.  Can

discuss a few simple examples?”



Twilight  nodded.  “But  I  need  to  develop  some  intuition  about  these.  Can

discuss a few simple examples?”

“Very well. Hum. Well think about the vector space R. Are the vectors 1 and

2 linearly independent?”

“Of course not, since 0 � 2 * 1 - 2.” 

“And clearly, it  would be impossible to have a spanning set with more than

one element in R.”

“Yes. For any two numbers there’s a linear combination that results in zero.”

“What about R2? Try the vectors 81, 0<, 80, 1<, 81, 1< and 82, 2<.”
“Those vectors are not linearly independent because the last two point in the

same direction.”

“And if you removed the last one?” 

“Then you could still form the third vector by summing the other two.” 

“And if you removed the third vector from the list?” 

“Then  the  vectors  would  be  linearly  independent  because  they  all  point  in

different directions.”

“I think you are getting the hang of this, Twilight Sparkle. What about R3?” 

“It seems like you could have three linearly independent vectors. So 81, 0, 0<,
80, 1, 0<,  and 80, 0, 1<  are linearly independent,  but if  you added any other vector to

the list, they no longer would be. Hm. I just noticed there may be some other vector

spaces hiding in here. Let v1, v2, and v3  be these vectors. Suppose I let v4 � 82, 0, 0<.
Then v3 and v4 on their own form a linearly dependent set. This means that v1 and v2

are both linearly independent, so neither of  them can have a nonzero factor in any

linear combination that is equal to zero.”

“You are really getting the hang of  this!  Yes,  you can always divide a list  of

vectors  into  a  vector  space  which  is  linearly  independent  and  another  which  is

linearly dependent.”

Twilight  smiled.  She  really  did  feel  like  she  was  understanding!  “It  seems

like  you  can’t  have  more  linearly  independent  vectors  than  the  dimension  of  the

space because that’s the number of vectors you need to span that space.”



Twilight  smiled.  She  really  did  feel  like  she  was  understanding!  “It  seems

like  you  can’t  have  more  linearly  independent  vectors  than  the  dimension  of  the

space because that’s the number of vectors you need to span that space.”

“Quite so! But actually we haven’t defined the concept of a dimension yet, so

you’re jumping ahead.”

Twilight frowned. “But aren’t you already admitting implicitly that this is so

by writing all the vectors in R as single numbers, and the vectors in R2 as lists of two

numbers,  and  allowing  me  to  write  the  vectors  in  R3  as  lists  of  three  numbers?

Clearly  the  reason  that  notation  works  is  that  the  list  represents  a  linear

combination of a spanning set of vectors, and if you weren’t sure you didn’t need any

more than the dimension of the space, you would write a longer list!”

Luna narrowed her eyes. “I admit nothing.”

“Oh come on!” Twilight rearedfore hoof.

Luna waved her forehoof. “You have passed my test!”

“What test?” asked Twilight with annoyance. 

“I  merely  reprimanded  you  to  test  your  intuition.  You  have  enough   to

proceed.”

“Right… a test.”

Theorem 2.4

“We shall have to prove that intuition now. We desire to show that… ahem…

EVERY BASIS OF ANY FINITE-DIMENSIONAL VECTOR SPACE HAS THE SAME

SIZE  (WHICH  SHALL  BE  THE  DEFINITION  OF  DIMENSION),  AND  THAT

EVERY  LINEARLY–INDEPENDENT  LIST  OF  VECTORS  OF  THE  SAME  SIZE  AS

THE DIMENSION MUST SPAN THE ENTIRE SPACE. This will characterize vector

spaces.

“Shhh!” Twilight covered her face with embarrassment. 

“Well that is the most important theorem!” 

Lemma 2.5

The first  thing to prove is  that for every linearly dependent spanning set S,

there exists a vector which can be removed from the set without altering the vector

space it spans. Let us write 



0 � â
i

ai vi

to denote a linear combination of S. That good?”

Twilight nodded. 

“You are not going to go crazy on me, are you, Twilight Sparkle?”

Twilight  was  struck  by  the  irony  that  Luna  would  be  worried  she  might  go

crazy. “What exactly are you iterating over?”

“I  just  wrote i  under the sum symbol  to  say that  we sum over  i.  We do not

worry over how big S  is,  so you can assume that the sum is over whatever values it

needs to be.

“Now let a j be nonzero value and write 

v j �

1

a j

â
i'i¹ j

ai vi

This proves the lemma. As to this notation, there is no good way of saying you want

to iterate over some set except skip one element of it.  The summoned says we sum

over i such that i ¹ j. How annoying. Next what do you think you could do?”

Twilight  stared  at  the  equations  for  a  second.  “We  want  to  show  that  the

span of spanIS - v jM is the same as spanHSL, so to do that we’d have to show that we’d

have  to  show  that  every  vector  which  can  be  a  linear  product  of  S  is  also  a  linear

product of S - v j.”

“Good! Now try to do that.”

“Say that there was a vector w which is a linear combination of S. Let’s write 

w � â
i

ai vi � a j v j + â
i'i¹ j

ai vi

Now I can substitute in the expression for v j.



w � â
i

ai vi �

a j

a j

â
i'i¹ j

ai vi + â
i'i¹ j

ai vi

and this shows that w can be written without relying on v j at all. QED, Princess!”

Proposition 2.6

“And look what a complicated-looking equation you’ve written!”

“I did, didn’t I?” Twilight said gleefully.

“Now here comes the proof  that  everything hinges on.  In a  vector  space V ,

every finite linearly independent list is smaller than or equal in size to any spanning

list of V . 

Let  S  be  a  linearly–independent  list  of  vectors  (though not  necessarily  one

that spans V , and let U  be a list of vectors that spans V . 

Now, if we remove an element x0 from S and insert it into U0, we can be sure

that  U1 � U + x0  is  linearly  dependent  by  corollary  2.3.  Therefore  there  is  some

element u1 Î U  that can be removed from U1 without changing the span. 

Next,  remove  another  element  x1  from  S  and  insert  it  to  produce

U2 � U1 - u1 + x1.  Once  again,  U2  must  be  linearly  dependent.  Since  all  of  the  xi  in

U2 are linearly independent, so we cannot safely remove any of them, but there must

be some u2 Î U  that can be removed from U2 without changing its span. 

Continue the process,  adding an extra  element from S  to  Ui  with each step

and  removing  an  element  of  U .  What  happens?  First  suppose  that  S  is  finite  and

S > U .”

“In that case, the process must terminate at some step n such that Un  has no

more elements of U  left in it.”

“But we know that Un is linearly dependent because 2.3, right?” 

“So there’s a contradiction. Therefore, either S and U  are both infinite…”

“In  which  case  in  which  the  process  never  terminates  and  nothing  is

proven.”

“… or S is finite and S £ U . Which proves the proposition.”

“Right! By the way, what can we prove if S  and U  are both finite and of the

same size?” 



“Right! By the way, what can we prove if S  and U  are both finite and of the

same size?” 

“Then the process terminates at some Un � S.”

“Which proves that S  is a spanning set! That proves part of theorem 2.3. To

prove the rest, suppose U  is a finite basis for V . Can S also be a basis?”

“Only if S is the same size as U .” 

“If S is a finite basis, what does that say about U?”

“U  is also a finite basis of the same size as S.”

“So  every  finite  basis  of  V  must  have  the  same  size  and  every  linearly-

independent list which is the same size as a basis must also be a basis.”

Definition 2.7 : Dimension

“I hope I can finally talk about the dimension of a vector space now!” 

“You  can  talk  about  the  dimension  of  a  finite-dimensional  vector  space

now.” Luna said sternly. “For shorthand we can write dimHV L for the dimension of V .

Now, what if U  and S are both bases for V?”

Proposition 2.7

“Then the issue is more subtle.”

“Exactly.  So  for  an  infinite–dimensional  vector  space,  it  is  possible  that

there  could  be  two  bases,  one  of  which  is  countable  and  one  uncountable.  We will

see some examples of that eventually. 

“So  infinite–dimensional  vector  spaces  don’t  really  have  a  very  clear

dimension!”

“No, the most you can say is that their dimension is infinite, but it does not

necessarily settle on any kind of infinity.”

“I think I need more intuition about that.”

“Not now. We won’t need any infinite-dimensional vector spaces for a while! 

The important  thing is  that  we now we know how to  think of  a  vector  as  a

list.  You  can  define  some  basis  of  the  vector  space,  and  write  vectors  as  a  list  that

describes a linear combination on that basis.”



The important  thing is  that  we now we know how to  think of  a  vector  as  a

list.  You  can  define  some  basis  of  the  vector  space,  and  write  vectors  as  a  list  that

describes a linear combination on that basis.”

“Of course, I already did know that…” Twilight said under her breath. 

Definition 2.8 : Image, kernel

“Now let us think about linear maps. Let A : V ® W  be a linear map, and let

V  be a finite–dimensional vector space with basis B. I will define A B to refer to the

list of vectors that results when each is multiplied by A. We refer to spanHA BL as the

image  of A.  The image is a subspace of W .  And the kernel  is the set of vectors in V

which A sends to zero.”

“Got it.”

“We  can  write  kerHAL  for  the  kernel  of  A  and  ImgHAL  for  the  image  of  A.  It

should be easy to see that the kernel is a vector space.”

“That would follow easily from the definition of left distributivity for a linear

map.”

“Now  if  A B  is  a  basis  for  the  image  of  A,  then  necessarily  A B  is  linearly

independent, whereas if some nonzero vector in V  was sent to 0, then A B could not

be linearly independent because there would be some nonzero linear combination of

it that is sent to zero, right?”

“Right.”

Proposition 2.8

“So A is only invert able if its kernel is zero-dimensional.”

“Ok.”

“Now  let  us  define  the  vector  lists  P  and  Q  such  that  A P  is  a  basis  for  the

image  of  A  and  Q  is  a  basis  for  the  kernel  of  A.  Clearly  P  is  linearly  independent

because otherwise A P could not be, and clearly P Ü Q must be linearly independent

because,  if  not,  then  there  would  be  some  nonzero  vector  v  such  that  v  is  in  the

kernel  of  A  and  A v  is  in  the  image  of  A,  which  by  definition  is  impossible.  Also,

P Ü Q  must be a basis of V  because otherwise that would imply a nonzero vector w

which is not in the kernel of A and such that A w is not in the image of A.

Proposition 2.9

This  proves  that  the  dimension  of  the  domain  of  A  must  be  equal  to  the

dimension of the kernel of A plus the dimension of the image of A.”



This  proves  that  the  dimension  of  the  domain  of  A  must  be  equal  to  the

dimension of the kernel of A plus the dimension of the image of A.”

(2.7)dimHkerHALL + dimHimgHALL � dimHV L
“Linear algebra is becoming simpler by the minute. It’s all very constrained.”

Definition 2.9 : Invertability

“Indeed. The last topic for today is invertability. A linear map A is invertable

if  there  is  a  linear  map  Z  such  that  Z A � 1  and  A Z � 1.  We  do  not  like  to  worry

about cases in where there is only a left inverse or only a right inverse, so we say that

both  have  to  be  inverses  of  each  other.  By  the  normal  rules  of  multiplication,  we

know the inverse is unique.”

Proposition 2.10

“And we also know that V  and W  must both have the same dimension, since

both A and Z must have a zero-dimensional kernel!” said Twilight with glee.

“Right! This implies that both A and B are injective and surjective. Injective

is the same as saying they both have a trivial kernel and if either were not surjective,

then it could not be that the inverse was injective.

Definition 2.10 : Isomorphic

Now we say that two vector spaces are isomorphic  if  there is an invert able

linear map between them. Two vector spaces which are isomorphic can be treated as

the  same,  because  you  can  think  of  either  one  as  the  other  one,  just  with  a  map

applied to it. Let us show that two finite–dimensional vector spaces are isomorphic

if they have the same dimension. 

Let A : V ® W  and Z : W ® V . We know that every finite-dimensional vector

space has a basis already, right?”

“Yes. That was in 2.6.”

“Oh  yes.  Now  then,  let  8v1, …, vn<  be  a  basis  for  V  and  let  8w1, …, wn<  be  a

basis for W . Now we can define 

AHa1 v1 + … + an vnL � a1 w1 + … + an wn

ZHa1 w1 + … + an wnL � a1 v1 + … + an vn

Clearly A and Z  as defined are both linear, and since we know that every vector has a

unique  representation  as  a  linear  combination  of  a  basis,  this  definition  is  not

logically  contradictory either.  A  and Z  as  defined are  both inverses  of  one another,

and therefore V  and W  are isomorphic!”



Clearly A and Z  as defined are both linear, and since we know that every vector has a

unique  representation  as  a  linear  combination  of  a  basis,  this  definition  is  not

logically  contradictory either.  A  and Z  as  defined are  both inverses  of  one another,

and therefore V  and W  are isomorphic!”

“This means that  there is  only one vector space of  any dimension for  every

field!”

“Yes,  so  like  Rn,  Cn,  and  Hn  are  pretty  much  what  we  are  talking  about,  at

least for finite vector spaces.”

“Wait a minute… what’s Hn?”

“Oh that… nothing! You’ll hear all about it later!”

Luna  winked  and  disappeared.  Twilight  blinked  and  hoped  she  would  be

able to keep herself out of trouble. 


